Currently, the approach most widely used to examine bone loss is the measurement of bone mineral density (BMD) using dual X-ray absorptiometry (DXA). However, bone loss due to immobilization creates changes in bone microarchitecture, which in turn are related to changes in bone mechanical function and competence to resist fracture. Unfortunately, the relationship between microarchitecture and mechanical function within the framework of immobilization and antiresorptive therapy has not being fully investigated. The goal of the present study was to investigate the structure–function relationship in trabecular bone in the real-world situations of a rapidly evolving osteoporosis (disuse), both with and without antiresorptive treatment. We evaluated the structure–function relationship in trabecular bone after bone loss (disuse-induced osteoporosis) and bisphosphonate treatment (antiresorptive therapy using risedronate) in canine trabecular bone using μCT and ultrasound wave propagation. Microstructure values determined from μCT images were used into the anisotropic poroelastic model of wave propagation in order to compute the apparent elastic constants (EC) and elastic anisotropy pattern of bone. Immobilization resulted in a significant reduction in trabecular thickness (Tb.Th) and bone volume fraction (BV/TV), while risedronate treatment combined with immobilization exhibited a lesser reduction in Tb.Th and BV/TV, suggesting that risedronate treatment decelerates bone loss, but it was unable to fully stop it. Risedronate treatment also increased the tissue mineral density (TMD), which when combined with the decrease in Tb.Th and BV/TV may explain the lack of significant differences in vBMD in both immobilization and risedronate treated groups. Interestingly, changes in apparent EC were much stronger in the superior–inferior (SI) direction than in the medial–lateral (ML) and anterior–posterior (AP) anatomical directions, producing changes in elastic anisotropy patterns. When data were pooled together, vBMD was able to explain 58% of ultrasound measurements variability, a poroelastic wave propagation analytical model (i.e., BMD modulated by fabric directionality) was able to predict 81% of experimental wave velocity variability, and also explained 91% of apparent EC and changes in elastic anisotropy patterns. Overall, measurements of vBMD were unable to distinguish changes in apparent EC due to immobilization or risedronate treatment. However, anisotropic poroelastic ultrasound (PEUS) wave propagation was able to distinguish functional changes in apparent EC and elastic anisotropy patterns due to immobilization and antiresorptive therapy, providing an enhanced discrimination of anisotropic bone loss and the structure–function relationship in immobilized and risedronate-treated bone, beyond vBMD.

References

1.
Steiger
,
P.
,
1995
, “
Standardization of Measurements for Assessing BMD by DXA
,”
Calcif. Tissue Int.
,
57
(
6
), p.
469
.10.1007/BF00301953
2.
Steiger
,
P.
,
1995
, “
Standardization of Postero-Anterior (PA) Spine BMD Measurements by DXA. Committee for Standards in DXA
,”
Bone
,
17
(
4
), p.
435
.10.1016/S8756-3282(95)00265-0
3.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1998
, “
Relationships Between Bone Morphology and Bone Elastic Properties Can Be Accurately Quantified Using High-Resolution Computer Reconstructions
,”
J. Orthop. Res.
,
16
(
1
), pp.
23
28
.10.1002/jor.1100160105
4.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
,
29
(
12
), pp.
1653
1657
.10.1016/S0021-9290(96)80021-2
5.
Kanis
,
J. A.
,
Melton
,
L. J.
, III
,
Christiansen
,
C.
,
Johnston
,
C. C.
, and
Khaltaev
,
N.
,
1994
, “
The Diagnosis of Osteoporosis
,”
J. Bone Miner. Res.
,
9
(
8
), pp.
1137
1141
.10.1002/jbmr.5650090802
6.
Formica
,
C. A.
,
1998
, “
Standardization of BMD Measurements
,”
Osteoporos Int.
,
8
(
1
), pp.
1
3
.10.1007/s001980050040
7.
Nielsen
,
S. P.
,
2000
, “
The Fallacy of BMD: A Critical Review of the Diagnostic Use of Dual X-Ray Absorptiometry
,”
Clin. Rheumatol.
,
19
(
3
), pp.
174
183
.10.1007/s100670050151
8.
Grigorian
,
M.
,
Shepherd
,
J. A.
,
Cheng
,
X. G.
,
Njeh
,
C. F.
,
Toschke
,
J. O.
, and
Genant
,
H. K.
,
2002
, “
Does Osteoporosis Classification Using Heel BMD Agree Across Manufacturers?
Osteoporos. Int.
,
13
(
8
), pp.
613
617
.10.1007/s001980200082
9.
Bolotin
,
H. H.
,
2007
, “
DXA in vivo BMD Methodology: An Erroneous and Misleading Research and Clinical Gauge of Bone Mineral Status, Bone Fragility, and Bone Remodelling
,”
Bone
,
41
(
1
), pp.
138
154
.10.1016/j.bone.2007.02.022
10.
Veenland
,
J. F.
,
Link
,
T. M.
,
Konermann
,
W.
,
Meier
,
N.
,
Grashuis
,
J. L.
, and
Gelsema
,
E. S.
,
1997
, “
Unraveling the Role of Structure and Density in Determining Vertebral Bone Strength
,”
Calcif. Tissue Int.
,
61
(
6
), pp.
474
479
.10.1007/s002239900370
11.
Smit
,
T. H.
,
Odgaard
,
A.
, and
Schneider
,
E.
,
1997
, “
Structure and Function of Vertebral Trabecular Bone
,”
Spine
,
22
(
24
), pp.
2823
2833
.10.1097/00007632-199712150-00005
12.
Turner
,
C. H.
,
2002
, “
Determinants of Skeletal Fragility and Bone Quality
,”
J. Musculoskeletal Neuronal Interact.
,
2
(
6
), pp.
527
528
.
13.
Turner
,
C. H.
,
2002
, “
Biomechanics of Bone: Determinants of Skeletal Fragility and Bone Quality
,”
Osteoporos. Int.
,
13
(
2
), pp.
97
104
.10.1007/s001980200000
14.
van Lenthe
,
G. H.
, and
Huiskes
,
R.
,
2002
, “
How Morphology Predicts Mechanical Properties of Trabecular Structures Depends on Intra-Specimen Trabecular Thickness Variations
,”
J. Biomech.
,
35
(
9
), pp.
1191
1197
.10.1016/S0021-9290(02)00081-7
15.
Currey
,
J. D.
,
2001
, “
Bone Strength: What Are We Trying to Measure?
Calcif. Tissue Int.
,
68
(
4
), pp.
205
210
.10.1007/s002230020040
16.
Currey
,
J. D.
, and
Zioupos
,
P.
,
2001
, “
The Effect of Porous Microstructure on the Anisotropy of Bone-Like Tissue: A Counterexample
,”
J. Biomech.
,
34
(
5
), pp.
707
710
.10.1016/S0021-9290(00)00207-4
17.
Cowin
,
S. C.
,
1985
, “
The Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
4
(
2
), pp.
137
147
.10.1016/0167-6636(85)90012-2
18.
Turner
,
C. H.
, and
Cowin
,
S. C.
,
1987
, “
Dependence of Elastic-Constants of an Anisotropic Porous Material Upon Porosity and Fabric
,”
J. Mater. Sci.
,
22
(
9
), pp.
3178
3184
.10.1007/BF01161180
19.
Turner
,
C. H.
,
Cowin
,
S. C.
,
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Rice
,
J. C.
,
1990
, “
The Fabric Dependence of the Orthotropic Elastic-Constants of Cancellous Bone
,”
J. Biomech.
,
23
(
6
), pp.
549
561
.10.1016/0021-9290(90)90048-8
20.
Yang
,
G.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Huiskes
,
R.
, and
Cowin
,
S. C.
,
1998
, “
The Anisotropic Hooke's Law for Cancellous Bone and Wood
,”
J. Elast.
,
53
(
2
), pp.
125
146
.10.1023/A:1007575322693
21.
Kabel
,
J.
,
van Rietbergen
,
B.
,
Odgaard
,
A.
, and
Huiskes
,
R.
,
1999
, “
Constitutive Relationships of Fabric, Density, and Elastic Properties in Cancellous Bone Architecture
,”
Bone
,
25
(
4
), pp.
481
486
.10.1016/S8756-3282(99)00190-8
22.
Gross
,
T.
,
Pahr
,
D. H.
,
Peyrin
,
F.
, and
Zysset
,
P. K.
,
2012
, “
Mineral Heterogeneity Has a Minor Influence on the Apparent Elastic Properties of Human Cancellous Bone: A SRmuCT-Based Finite Element Study
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1137
1144
.10.1080/10255842.2011.581236
23.
Cardoso
,
L.
, and
Cowin
,
S. C.
,
2011
, “
Fabric Dependence of Quasi-Waves in Anisotropic Porous Media
,”
J. Acoust. Soc. Am.
,
129
(
5
), pp.
3302
3316
.10.1121/1.3557032
24.
Cardoso
,
L.
, and
Cowin
,
S. C.
,
2012
, “
Role of Structural Anisotropy of Biological Tissues in Poroelastic Wave Propagation
,”
Mech. Mater.
,
44
, pp.
174
188
.10.1016/j.mechmat.2011.08.007
25.
Cowin
,
S. C.
, and
Cardoso
,
L.
,
2010
, “
Fabric Dependence of Bone Ultrasound
,”
Acta Bioeng. Biomech.
,
12
(
2
), pp.
3
23
.
26.
Cowin
,
S. C.
, and
Cardoso
,
L.
,
2011
, “
Fabric Dependence of Wave Propagation in Anisotropic Porous Media
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
39
65
.10.1007/s10237-010-0217-7
27.
Moesen
,
M.
,
Cardoso
,
L.
, and
Cowin
,
S. C.
,
2012
, “
A Symmetry Invariant Formulation of the Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
,
54
, pp.
70
83
.10.1016/j.mechmat.2012.07.004
28.
Cardoso
,
L.
,
Meunier
,
A.
, and
Oddou
,
Ch.
,
2008
, “
In Vitro Acoustic Wave Propagation in Human and Bovine Cancellous Bone as Predicted by Biot's Theory
,”
J. Mech. Med. Biol.
,
8
(
2
), pp.
1
19
.10.1142/S0219519408002565
29.
Cardoso
,
L.
,
Teboul
,
F.
,
Sedel
,
L.
,
Oddou
,
C.
, and
Meunier
,
A.
,
2003
, “
In Vitro Acoustic Waves Propagation in Human and Bovine Cancellous Bone
,”
J. Bone Miner. Res.
,
18
(
10
), pp.
1803
1812
.10.1359/jbmr.2003.18.10.1803
30.
Souzanchi
,
M. F.
,
Palacio-Mancheno
,
P.
,
Borisov
,
Y. A.
,
Cardoso
,
L.
, and
Cowin
,
S. C.
,
2012
, “
Microarchitecture and Bone Quality in the Human Calcaneus: Local Variations of Fabric Anisotropy
,”
J. Bone Miner. Res.
,
27
(
12
), pp.
2562
2572
.10.1002/jbmr.1710
31.
Li
,
C. Y.
,
Majeska
,
R. J.
,
Laudier
,
D. M.
,
Mann
,
R.
, and
Schaffler
,
M. B.
,
2005
, “
High-Dose Risedronate Treatment Partially Preserves Cancellous Bone Mass and Microarchitecture During Long-Term Disuse
,”
Bone
,
37
(
3
), pp.
287
295
.10.1016/j.bone.2005.04.041
32.
Li
,
C. Y.
,
Price
,
C.
,
Delisser
,
K.
,
Nasser
,
P.
,
Laudier
,
D.
,
Clement
,
M.
,
Jepsen
,
K. J.
, and
Schaffler
,
M. B.
,
2005
, “
Long-Term Disuse Osteoporosis Seems Less Sensitive to Bisphosphonate Treatment Than Other Osteoporosis
,”
J. Bone Miner. Res.
,
20
(
1
), pp.
117
124
.10.1359/JBMR.041010
33.
Palacio-Mancheno
,
P. E.
,
Larriera
,
A. I.
,
Doty
,
S. B.
,
Cardoso
,
L.
, and
Fritton
,
S. P.
,
2014
, “
3D Assessment of Cortical Bone Porosity and Tissue Mineral Density Using High-Resolution MicroCT: Effects of Resolution and Threshold Method
,”
J. Bone Miner. Res.
,
29
(
1
), pp.
142
150
.10.1002/jbmr.2012
34.
Bouxsein
,
M. L.
,
Boyd
,
S. K.
,
Christiansen
,
B. A.
,
Guldberg
,
R. E.
,
Jepsen
,
K. J.
, and
Muller
,
R.
,
2010
, “
Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography
,”
J. Bone Miner. Res.
,
25
(
7
), pp.
1468
1486
.10.1002/jbmr.141
35.
Cowin
,
S. C.
, and
Turner
,
C. H.
,
1992
, “
On the Relationship Between the Orthotropic Young's Moduli and Fabric
,”
J. Biomech.
,
25
(
12
), pp.
1493
1494
.10.1016/0021-9290(92)90062-6
36.
Cowin
,
S. C.
,
2004
, “
Anisotropic Poroelasticity: Fabric Tensor Formulation
,”
Mech. Mater.
,
36
(
8
), pp.
665
677
.10.1016/j.mechmat.2003.05.001
37.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
,
1989
, “
Identification of the Elastic Symmetry of Bone and Other Materials
,”
J. Biomech.
,
22
(
6–7
), pp.
503
515
.10.1016/0021-9290(89)90001-8
38.
Odgaard
,
A.
,
1997
, “
Three-Dimensional Methods for Quantification of Cancellous Bone Architecture
,”
Bone
,
20
(
4
), pp.
315
328
.10.1016/S8756-3282(97)00007-0
39.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
,
1997
, “
Fabric and Elastic Principal Directions of Cancellous Bone Are Closely Related
,”
J. Biomech.
,
30
(
5
), pp.
487
495
.10.1016/S0021-9290(96)00177-7
40.
Odgaard
,
A.
, and
Gundersen
,
H. J.
,
1993
, “
Quantification of Connectivity in Cancellous Bone, With Special Emphasis on 3-D Reconstructions
,”
Bone
,
14
(
2
), pp.
173
182
.10.1016/8756-3282(93)90245-6
41.
Harrigan
,
T. P.
, and
Mann
,
R. W.
,
1984
, “
Characterization of Microstructural Anisotropy in Orthotropic Materials Using a 2nd Rank Tensor
,”
J. Mater. Sci.
,
19
(
3
), pp.
761
767
.10.1007/BF00540446
42.
Whitehouse
,
W. J.
,
1974
, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
,
101
(
Pt 2
), pp.
153
168
.10.1111/j.1365-2818.1974.tb03878.x
43.
Hosokawa
,
A.
, and
Otani
,
T.
,
1997
, “
Ultrasonic Wave Propagation in Bovine Cancellous Bone
,”
J. Acoust. Soc. Am.
,
101
(
1
), pp.
558
562
.10.1121/1.418118
44.
Hosokawa
,
A.
, and
Otani
,
T.
,
1998
, “
Acoustic Anisotropy in Bovine Cancellous Bone
,”
J. Acoust. Soc. Am.
,
103
(
5 Pt 1
), pp.
2718
2722
.10.1121/1.422790
45.
Wear
,
K. A.
,
2010
, “
Decomposition of Two-Component Ultrasound Pulses in Cancellous Bone Using Modified Least Squares Prony Method—Phantom Experiment and Simulation
,”
Ultrasound Med. Biol.
,
36
(
2
), pp.
276
287
.10.1016/j.ultrasmedbio.2009.06.1092
46.
Wear
,
K. A.
,
Laib
,
A.
,
Stuber
,
A. P.
, and
Reynolds
,
J. C.
,
2005
, “
Comparison of Measurements of Phase Velocity in Human Calcaneus to Biot Theory
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
3319
3324
.10.1121/1.1886388
47.
Mizuno
,
K.
,
Somiya
,
H.
,
Kubo
,
T.
,
Matsukawa
,
M.
,
Otani
,
T.
, and
Tsujimoto
,
T.
,
2010
, “
Influence of Cancellous Bone Microstructure on Two Ultrasonic Wave Propagations in Bovine Femur: An In Vitro Study
,”
J. Acoust. Soc. Am.
,
128
(
5
), pp.
3181
3189
.10.1121/1.3493444
48.
Mizuno
,
K.
,
Matsukawa
,
M.
,
Otani
,
T.
,
Laugier
,
P.
, and
Padilla
,
F.
,
2009
, “
Propagation of Two Longitudinal Waves in Human Cancellous Bone: An In Vitro Study
,”
J. Acoust. Soc. Am.
,
125
(
5
), pp.
3460
3466
.10.1121/1.3111107
49.
Mizuno
,
K.
,
Matsukawa
,
M.
,
Otani
,
T.
,
Takada
,
M.
,
Mano
,
I.
, and
Tsujimoto
,
T.
,
2008
, “
Effects of Structural Anisotropy of Cancellous Bone on Speed of Ultrasonic Fast Waves in the Bovine Femur
,”
IEEE Trans. Ultrason. Ferroelectr Freq. Control
,
55
(
7
), pp.
1480
1487
.10.1109/TUFFC.2008.823
50.
Biot
,
M. A.
,
1952
, “
Propagation of Elastic Waves in a Cylindrical Bore Containing a Fluid
,”
J. Appl. Phys.
,
23
(
9
), pp.
977
1005
.10.1063/1.1702365
51.
Biot
,
M. A.
,
1956
, “
Propagation of Elastic Waves in a Fluid Saturated Porous Solid. II. High Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.10.1121/1.1908241
52.
Biot
,
M. A.
,
1956
, “
Propagation of Elastic Waves in a Fluid Saturated Porous Solid. I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.10.1121/1.1908239
53.
Biot
,
M. A.
, and
Willis
,
D. G.
,
1957
, “
Elastic Coefficients of the Theory of Consolidation
,”
ASME J. Appl. Mech.
,
24
, pp.
594
601
.
54.
Biot
,
M. A.
,
1962
, “
Generalized Theory of Acoustic Propagation in Porous Dissipative Media
,”
J. Acoust. Soc. Am.
,
34
(
9A
), pp.
1254
1264
.10.1121/1.1918315
55.
Biot
,
M. A.
,
1962
, “
Mechanics of Deformation and Acoustic Propagation in Porous Media
,”
J. Appl. Phys.
,
33
(
4
), pp.
1482
1498
.10.1063/1.1728759
56.
Cowin
,
S. C.
,
1999
, “
Bone Poroelasticity
,”
J. Biomech.
,
32
(
3
), pp.
217
238
.10.1016/S0021-9290(98)00161-4
57.
Gourion-Arsiquaud
,
S.
,
Allen
,
M. R.
,
Burr
,
D. B.
,
Vashishth
,
D.
,
Tang
,
S. Y.
, and
Boskey
,
A. L.
,
2010
, “
Bisphosphonate Treatment Modifies Canine Bone Mineral and Matrix Properties and Their Heterogeneity
,”
Bone
,
46
(
3
), pp.
666
672
.10.1016/j.bone.2009.11.011
58.
Allen
,
M. R.
, and
Burr
,
D. B.
,
2011
, “
Bisphosphonate Effects on Bone Turnover, Microdamage, and Mechanical Properties: What We Think We Know and What We Know That We Don't Know
,”
Bone
,
49
(
1
), pp.
56
65
.10.1016/j.bone.2010.10.159
59.
Uhthoff
,
H. K.
, and
Jaworski
,
Z. F.
,
1978
, “
Bone Loss in Response to Long-Term Immobilisation
,”
J. Bone Joint Surg. Br.
,
60-B
(
3
), pp.
420
429
.
60.
Allen
,
M. R.
, and
Burr
,
D. B.
,
2008
, “
Changes in Vertebral Strength–Density and Energy Absorption–Density Relationships Following Bisphosphonate Treatment in Beagle Dogs
,”
Osteoporos. Int.
,
19
(
1
), pp.
95
99
.10.1007/s00198-007-0451-8
61.
Day
,
J. S.
,
Ding
,
M.
,
Bednarz
,
P.
,
van der Linden
,
J. C.
,
Mashiba
,
T.
,
Hirano
,
T.
,
Johnston
,
C. C.
,
Burr
,
D. B.
,
Hvid
,
I.
,
Sumner
,
D. R.
, and
Weinans
,
H.
,
2004
, “
Bisphosphonate Treatment Affects Trabecular Bone Apparent Modulus Through Micro-Architecture Rather Than Matrix Properties
,”
J. Orthop. Res.
,
22
(
3
), pp.
465
471
.10.1016/j.orthres.2003.05.001
You do not currently have access to this content.