Traumatic injuries can have systemic consequences, as the early inflammatory response after trauma can lead to tissue destruction at sites not affected by the initial injury. This systemic catabolism may occur in the skeleton following traumatic injuries such as anterior cruciate ligament (ACL) rupture. However, bone loss following injury at distant, unrelated skeletal sites has not yet been established. In the current study, we utilized a mouse knee injury model to determine whether acute knee injury causes a mechanically significant trabecular bone loss at a distant, unrelated skeletal site (L5 vertebral body). Knee injury was noninvasively induced using either high-speed (HS; 500 mm/s) or low-speed (LS; 1 mm/s) tibial compression overload. HS injury creates an ACL rupture by midsubstance tear, while LS injury creates an ACL rupture with an associated avulsion bone fracture. At 10 days post-injury, vertebral trabecular bone structure was quantified using high-resolution microcomputed tomography (μCT), and differences in mechanical properties were determined using finite element modeling (FEM) and compressive mechanical testing. We hypothesized that knee injury would initiate a loss of trabecular bone structure and strength at the L5 vertebral body. Consistent with our hypothesis, we found significant decreases in trabecular bone volume fraction (BV/TV) and trabecular number at the L5 vertebral body in LS injured mice compared to sham (−8.8% and −5.0%, respectively), while HS injured mice exhibited a similar, but lower magnitude response (−5.1% and −2.5%, respectively). Contrary to our hypothesis, this decrease in trabecular bone structure did not translate to a significant deficit in compressive stiffness or ultimate load of the full trabecular body assessed by mechanical testing or FEM. However, we were able to detect significant decreases in compressive stiffness in both HS and LS injured specimens when FE models were loaded directly through the trabecular bone region (−9.9% and −8.1%, and 3, respectively). This finding may be particularly important for osteoporotic fracture risk, as damage within vertebral bodies has been shown to initiate within the trabecular bone compartment. Altogether, these data point to a systemic trabecular bone loss as a consequence of fracture or traumatic musculoskeletal injury, which may be an underlying mechanism contributing to increased risk of refracture following an initial injury. This finding may have consequences for treatment of acute musculoskeletal injuries and the prevention of future bone fragility.

References

1.
Lenz
,
A.
,
Franklin
,
G. A.
, and
Cheadle
,
W. G.
,
2007
, “
Systemic Inflammation After Trauma
,”
Injury
,
38
(
12
), pp.
1336
1345
.10.1016/j.injury.2007.10.003
2.
Pfeifer
,
R.
,
Darwiche
,
S.
,
Kohut
,
L.
,
Billiar
,
T. R.
, and
Pape
,
H. C.
,
2013
, “
Cumulative Effects of Bone and Soft Tissue Injury on Systemic Inflammation: A Pilot Study
,”
Clin. Orthop. Relat. Res.
,
471
(
9
), pp.
2815
2821
.10.1007/s11999-013-2908-8
3.
Irie
,
K.
,
Uchiyama
,
E.
, and
Iwaso
,
H.
,
2003
, “
Intraarticular Inflammatory Cytokines in Acute Anterior Cruciate Ligament Injured Knee
,”
Knee
,
10
(
1
), pp.
93
96
.10.1016/S0968-0160(02)00083-2
4.
Brophy
,
R. H.
,
Rai
,
M. F.
,
Zhang
,
Z.
,
Torgomyan
,
A.
, and
Sandell
,
L. J.
,
2012
, “
Molecular Analysis of Age and Sex-Related Gene Expression in Meniscal Tears With and Without a Concomitant Anterior Cruciate Ligament Tear
,”
J. Bone Jt. Surg. Am.
,
94
(
5
), pp.
385
393
.10.2106/JBJS.K.00919
5.
Lohmander
,
L. S.
,
Atley
,
L. M.
,
Pietka
,
T. A.
, and
Eyre
,
D. R.
,
2003
, “
The Release of Crosslinked Peptides From Type II Collagen Into Human Synovial Fluid is Increased Soon After Joint Injury and in Osteoarthritis
,”
Arthritis Rheum.
,
48
(
11
), pp.
3130
3139
.10.1002/art.11326
6.
Lohmander
,
L. S.
,
Dahlberg
,
L.
,
Ryd
,
L.
, and
Heinegard
,
D.
,
1989
, “
Increased Levels of Proteoglycan Fragments in Knee Joint Fluid After Injury
,”
Arthritis Rheum.
,
32
(
11
), pp.
1434
1442
.10.1002/anr.1780321113
7.
Lohmander
,
L. S.
,
Saxne
,
T.
, and
Heinegard
,
D. K.
,
1994
, “
Release of Cartilage Oligomeric Matrix Protein (COMP) Into Joint Fluid After Knee Injury and in Osteoarthritis
,”
Ann. Rheum. Dis.
,
53
(
1
), pp.
8
13
.10.1136/ard.53.1.8
8.
Lohmander
,
L. S.
,
Roos
,
H.
,
Dahlberg
,
L.
,
Hoerrner
,
L. A.
, and
Lark
,
M. W.
,
1994
, “
Temporal Patterns of Stromelysin-1, Tissue Inhibitor, and Proteoglycan Fragments in Human Knee Joint Fluid After Injury to the Cruciate Ligament or Meniscus
,”
J. Orthop. Res.
,
12
(
1
), pp.
21
28
.10.1002/jor.1100120104
9.
Dahlberg
,
L.
,
Roos
,
H.
,
Saxne
,
T.
,
Heinegard
,
D.
,
Lark
,
M. W.
,
Hoerrner
,
L. A.
, and
Lohmander
,
L. S.
,
1994
, “
Cartilage Metabolism in the Injured and Uninjured Knee of the Same Patient
,”
Ann. Rheum. Dis.
,
53
(
12
), pp.
823
827
.10.1136/ard.53.12.823
10.
Mueller
,
M.
,
Schilling
,
T.
,
Minne
,
H. W.
, and
Ziegler
,
R.
,
1991
, “
A Systemic Acceleratory Phenomenon (SAP) Accompanies the Regional Acceleratory Phenomenon (RAP) During Healing of a Bone Defect in the Rat
,”
J. Bone Miner. Res.
,
6
(
4
), pp.
401
410
.10.1002/jbmr.5650060412
11.
Christiansen
,
B. A.
,
Anderson
,
M. J.
,
Lee
,
C. A.
,
Williams
,
J. C.
,
Yik
,
J. H.
, and
Haudenschild
,
D. R.
,
2012
, “
Musculoskeletal Changes Following Non-Invasive Knee Injury Using a Novel Mouse Model of Post-Traumatic Osteoarthritis
,”
Osteoarthritis Cartilage
,
20
(
7
), pp.
773
782
.10.1016/j.joca.2012.04.014
12.
Lockwood
,
K. A.
,
Chu
,
B. T.
,
Anderson
,
M. J.
,
Haudenschild
,
D. R.
, and
Christiansen
,
B. A.
,
2013
, “
Comparison of Loading Rate-Dependent Injury Modes in a Murine Model of Post-Traumatic Osteoarthritis
,”
J. Orthop. Res.
,
32
(
1
), pp.
79
88
.10.1002/jor.22480
13.
Fyhrie
,
D. P.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Schaffler
,
M. B.
, and
Kuo
,
R. F.
,
1995
, “
Human Vertebral Cancellous Bone Surface Distribution
,”
Bone
,
17
(
3
), pp.
287
291
.10.1016/8756-3282(95)00218-3
14.
Hou
,
F. J.
,
Lang
,
S. M.
,
Hoshaw
,
S. J.
,
Reimann
,
D. A.
, and
Fyhrie
,
D. P.
,
1998
, “
Human Vertebral Body Apparent and Hard Tissue Stiffness
,”
J. Biomech.
,
31
(
11
), pp.
1009
1015
.10.1016/S0021-9290(98)00110-9
15.
Fyhrie
,
D. P.
,
Hoshaw
,
S. J.
,
Hamid
,
M. S.
, and
Hou
,
F. J.
,
2000
, “
Shear Stress Distribution in the Trabeculae of Human Vertebral Bone
,”
Ann. Biomed. Eng.
,
28
(
10
), pp.
1194
1199
.10.1114/1.1318928
16.
Turner
,
C. H.
,
Hsieh
,
Y. F.
,
Muller
,
R.
,
Bouxsein
,
M. L.
,
Rosen
,
C. J.
,
McCrann
,
M. E.
,
Donahue
,
L. R.
, and
Beamer
,
W. G.
,
2001
, “
Variation in Bone Biomechanical Properties, Microstructure, and Density in BXH Recombinant Inbred Mice
,”
J. Bone Miner. Res.
,
16
(
2
), pp.
206
213
.10.1359/jbmr.2001.16.2.206
17.
Tommasini
,
S. M.
,
Morgan
,
T. G.
,
van der Meulen
,
M.
, and
Jepsen
,
K. J.
,
2005
, “
Genetic Variation in Structure-Function Relationships for the Inbred Mouse Lumbar Vertebral Body
,”
J. Bone Miner. Res.
,
20
(
5
), pp.
817
827
.10.1359/JBMR.041234
18.
Reeves
,
G. M.
,
McCreadie
,
B. R.
,
Chen
,
S.
,
Galecki
,
A. T.
,
Burke
,
D. T.
,
Miller
,
R. A.
, and
Goldstein
,
S. A.
,
2007
, “
Quantitative Trait Loci Modulate Vertebral Morphology and Mechanical Properties in a Population of 18-Month-Old Genetically Heterogeneous Mice
,”
Bone
,
40
(
2
), pp.
433
443
.10.1016/j.bone.2006.08.018
19.
Klotzbuecher
,
C. M.
,
Ross
,
P. D.
,
Landsman
,
P. B.
,
Abbott
,
T. A.
, 3rd
, and
Berger
,
M.
,
2000
, “
Patients With Prior Fractures Have an Increased Risk of Future Fractures: A Summary of the Literature and Statistical Synthesis
,”
J. Bone Miner. Res.
,
15
(
4
), pp.
721
739
.10.1359/jbmr.2000.15.4.721
20.
Haentjens
,
P.
,
Autier
,
P.
,
Collins
,
J.
,
Velkeniers
,
B.
,
Vanderschueren
,
D.
, and
Boonen
,
S.
,
2003
, “
Colles Fracture, Spine Fracture, and Subsequent Risk of Hip Fracture in Men and Women. A Meta-Analysis
,”
J. Bone Jt. Surg. Am.
,
85-A
(
10
), pp.
1936
1943
.
21.
Robinson
,
C. M.
,
Royds
,
M.
,
Abraham
,
A.
,
McQueen
,
M. M.
,
Court-Brown
,
C. M.
, and
Christie
,
J.
,
2002
, “
Refractures in Patients at Least Forty-Five Years Old. A Prospective Analysis of Twenty-Two Thousand and Sixty Patients
,”
J. Bone Jt. Surg. Am.
,
84-A
(
9
), pp.
1528
1533
.
22.
Lauritzen
,
J. B.
,
Schwarz
,
P.
,
McNair
,
P.
,
Lund
,
B.
, and
Transbol
,
I.
,
1993
, “
Radial and Humeral Fractures as Predictors of Subsequent Hip, Radial or Humeral Fractures in Women, and Their Seasonal Variation
,”
Osteoporosis Int.
,
3
(
3
), pp.
133
137
.10.1007/BF01623274
23.
Black
,
D. M.
,
Arden
,
N. K.
,
Palermo
,
L.
,
Pearson
,
J.
, and
Cummings
,
S. R.
,
1999
, “
Prevalent Vertebral Deformities Predict Hip Fractures and New Vertebral Deformities But Not Wrist Fractures. Study of Osteoporotic Fractures Research Group
,”
J. Bone Miner. Res.
,
14
(
5
), pp.
821
828
.10.1359/jbmr.1999.14.5.821
24.
Wu
,
F.
,
Mason
,
B.
,
Horne
,
A.
,
Ames
,
R.
,
Clearwater
,
J.
,
Liu
,
M.
,
Evans
,
M. C.
,
Gamble
,
G. D.
, and
Reid
,
I. R.
,
2002
, “
Fractures Between the Ages of 20 and 50 Years Increase Women's Risk of Subsequent Fractures
,”
Arch. Intern. Med.
,
162
(
1
), pp.
33
36
.10.1001/archinte.162.1.33
25.
Melton
,
L. J.
III
,
Ilstrup
,
D. M.
,
Beckenbaugh
,
R. D.
, and
Riggs
,
B. L.
,
1982
, “
Hip Fracture Recurrence. A Population-Based Study
,”
Clin. Orthop. Relat. Res.
,
167
(7), pp.
131
138
.
26.
Silman
,
A. J.
,
1995
, “
The Patient With Fracture: The Risk of Subsequent Fractures
,”
Am. J. Med.
,
98
(
2A
), pp.
12S
16S
.10.1016/S0002-9343(05)80039-7
27.
Goulding
,
A.
,
Cannan
,
R.
,
Williams
,
S. M.
,
Gold
,
E. J.
,
Taylor
,
R. W.
, and
Lewis-Barned
,
N. J.
,
1998
, “
Bone Mineral Density in Girls With Forearm Fractures
,”
J. Bone Miner. Res.
,
13
(
1
), pp.
143
148
.10.1359/jbmr.1998.13.1.143
28.
Johnell
,
O.
,
Kanis
,
J. A.
,
Oden
,
A.
,
Sernbo
,
I.
,
Redlund-Johnell
,
I.
,
Petterson
,
C.
,
De Laet
,
C.
, and
Jonsson
,
B.
,
2004
, “
Fracture Risk Following an Osteoporotic Fracture
,”
Osteoporosis Int.
,
15
(
3
), pp.
175
179
.10.1007/s00198-003-1514-0
29.
Clinton
,
J.
,
Franta
,
A.
,
Polissar
,
N. L.
,
Neradilek
,
B.
,
Mounce
,
D.
,
Fink
,
H. A.
,
Schousboe
,
J. T.
, and
Matsen
,
F. A.
III
,
2009
, “
Proximal Humeral Fracture as a Risk Factor for Subsequent Hip Fractures
,”
J. Bone Jt. Surg. Am.
,
91
(
3
), pp.
503
511
.10.2106/JBJS.G.01529
30.
Lindsay
,
R.
,
Silverman
,
S. L.
,
Cooper
,
C.
,
Hanley
,
D. A.
,
Barton
,
I.
,
Broy
,
S. B.
,
Licata
,
A.
,
Benhamou
,
L.
,
Geusens
,
P.
,
Flowers
,
K.
,
Stracke
,
H.
, and
Seeman
,
E.
,
2001
, “
Risk of New Vertebral Fracture in the Year Following a Fracture
,”
JAMA
,
285
(
3
), pp.
320
323
.10.1001/jama.285.3.320
31.
Cao
,
K. D.
,
Grimm
,
M. J.
, and
Yang
,
K. H.
,
2001
, “
Load Sharing Within a Human Lumbar Vertebral Body Using the Finite Element Method
,”
Spine (Phila Pa 1976)
,
26
(
12
), pp.
E253
E260
.10.1097/00007632-200106150-00011
32.
Eswaran
,
S. K.
,
Gupta
,
A.
,
Adams
,
M. F.
, and
Keaveny
,
T. M.
,
2006
, “
Cortical and Trabecular Load Sharing in the Human Vertebral Body
,”
J. Bone Miner. Res.
,
21
(
2
), pp.
307
314
.10.1359/jbmr.2006.21.2.307
33.
Roux
,
J. P.
,
Wegrzyn
,
J.
,
Arlot
,
M. E.
,
Guyen
,
O.
,
Delmas
,
P. D.
,
Chapurlat
,
R.
, and
Bouxsein
,
M. L.
,
2010
, “
Contribution of Trabecular and Cortical Components to Biomechanical Behavior of Human Vertebrae: An Ex Vivo Study
,”
J. Bone Miner. Res.
,
25
(
2
), pp.
356
361
.10.1359/jbmr.090803
34.
Eswaran
,
S. K.
,
Gupta
,
A.
, and
Keaveny
,
T. M.
,
2007
, “
Locations of Bone Tissue at High Risk of Initial Failure During Compressive Loading of the Human Vertebral Body
,”
Bone
,
41
(
4
), pp.
733
739
.10.1016/j.bone.2007.05.017
35.
Hosseini
,
H. S.
,
Clouthier
,
A. L.
, and
Zysset
,
P. K.
,
2014
, “
Experimental Validation of Finite Element Analysis of Human Vertebral Collapse Under Large Compressive Strains
,”
ASME J. Biomech. Eng.
,
136
(
4
), p.
041006
.10.1115/1.4026409
36.
Kazakia
,
G. J.
,
Tjong
,
W.
,
Nirody
,
J. A.
,
Burghardt
,
A. J.
,
Carballido-Gamio
,
J.
,
Patsch
,
J. M.
,
Link
,
T.
,
Feeley
,
B. T.
, and
Ma
,
C. B.
,
2014
, “
The Influence of Disuse on Bone Microstructure and Mechanics Assessed by HR-PQCT
,”
Bone
,
63
(6), pp.
132
140
.10.1016/j.bone.2014.02.014
37.
Christen
,
P.
,
van Rietbergen
,
B.
,
Lambers
,
F. M.
,
Muller
,
R.
, and
Ito
,
K.
,
2012
, “
Bone Morphology Allows Estimation of Loading History in a Murine Model of Bone Adaptation
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
483
492
.10.1007/s10237-011-0327-x
You do not currently have access to this content.