Using computed tomography (CT) or magnetic resonance (MR) images to construct 3D knee models has been widely used in biomedical engineering research. Statistical shape modeling (SSM) method is an alternative way to provide a fast, cost-efficient, and subject-specific knee modeling technique. This study was aimed to evaluate the feasibility of using a combined dual-fluoroscopic imaging system (DFIS) and SSM method to investigate in vivo knee kinematics. Three subjects were studied during a treadmill walking. The data were compared with the kinematics obtained using a CT-based modeling technique. Geometric root-mean-square (RMS) errors between the knee models constructed using the SSM and CT-based modeling techniques were 1.16 mm and 1.40 mm for the femur and tibia, respectively. For the kinematics of the knee during the treadmill gait, the SSM model can predict the knee kinematics with RMS errors within 3.3 deg for rotation and within 2.4 mm for translation throughout the stance phase of the gait cycle compared with those obtained using the CT-based knee models. The data indicated that the combined DFIS and SSM technique could be used for quick evaluation of knee joint kinematics.

References

1.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
,
43
(
6
), pp.
638
649
.10.1109/10.495283
2.
Tsai
,
T. Y.
,
Lu
,
T. W.
,
Chen
,
C. M.
,
Kuo
,
M. Y.
, and
Hsu
,
H. C.
,
2010
, “
A Volumetric Model-Based 2D to 3D Registration Method for Measuring Kinematics of Natural Knees With Single-Plane Fluoroscopy
,”
Med. Phys.
,
37
(
3
), pp.
1273
1284
.10.1118/1.3301596
3.
Tashman
,
S.
, and
Anderst
,
W.
,
2003
, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
238
245
.10.1115/1.1559896
4.
Li
,
G.
,
Wuerz
,
T. H.
, and
DeFrate
,
L. E.
,
2004
, “
Feasibility of Using Orthogonal Fluoroscopic Images to Measure in vivo Joint Kinematics
,”
ASME J. Biomech. Eng.
,
126
(
2
), pp.
314
318
.10.1115/1.1691448
5.
Li
,
J. S.
,
Hosseini
,
A.
,
Cancre
,
L.
,
Ryan
,
N.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2013
, “
Kinematic Characteristics of the Tibiofemoral Joint During a Step-Up Activity
,”
Gait Posture
,
38
(4), pp. 712–716.10.1016/j.gaitpost.2013.03.004
6.
DeFrate
,
L. E.
,
Sun
,
H.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2004
, “
In vivo Tibiofemoral Contact Analysis Using 3D MRI-Based Knee Models
,”
J. Biomech.
,
37
(
10
), pp.
1499
1504
.10.1016/j.jbiomech.2004.01.012
7.
Biswas
,
D.
,
Bible
,
J. E.
,
Bohan
,
M.
,
Simpson
,
A. K.
,
Whang
,
P. G.
, and
Grauer
,
J. N.
,
2009
, “
Radiation Exposure From Musculoskeletal Computerized Tomographic Scans
,”
J. Bone Jt. Surg., Am.
Vol.,
91
(
8
), pp.
1882
1889
.10.2106/JBJS.H.01199
8.
Zheng
,
G.
,
Ballester
,
M. A.
,
Styner
,
M.
, and
Nolte
,
L. P.
,
2006
, “
Reconstruction of Patient-Specific 3D Bone Surface From 2D Calibrated Fluoroscopic Images and Point Distribution Model
,” Med. Image Comput. Comput. Assist. Interv.,
9
(
1
), pp.
25
32
. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17354870
9.
Zhu
,
Z.
, and
Li
,
G.
,
2011
, “
Construction of 3D Human Distal Femoral Surface Models Using a 3D Statistical Deformable Model
,”
J. Biomech.
,
44
(
13
), pp.
2362
2368
.10.1016/j.jbiomech.2011.07.006
10.
Lorenz
,
C.
, and
Krahnstöver
,
N.
,
2000
, “
Generation of Point-Based 3D Statistical Shape Models for Anatomical Objects
,”
Comput. Vision Image Understanding
,
77
(
2
), pp.
175
191
.10.1006/cviu.1999.0814
11.
Lamecker
,
H.
,
Seebass
,
M.
,
Lange
,
T.
,
Hege
,
H. C.
, and
Deuflhard
,
P.
,
2004
, “
Visualization of the Variability of 3D Statistical Shape Models by Animation
,”
Stud. Health Technol. Inform.
,
98
, pp.
190
196
.10.3233/978-1-60750-942-4-190
12.
Baka
,
N.
,
Kaptein
,
B. L.
,
de Bruijne
,
M.
,
van Walsum
,
T.
,
Giphart
,
J. E.
,
Niessen
,
W. J.
, and
Lelieveldt
,
B. P.
,
2011
, “
2D–3D Shape Reconstruction of the Distal Femur From Stereo X-ray Imaging Using Statistical Shape Models
,”
Med. Image Anal.
,
15
(
6
), pp.
840
850
.10.1016/j.media.2011.04.001
13.
Yang
,
Y. M.
,
Rueckert
,
D.
, and
Bull
,
A. M.
,
2008
, “
Predicting the Shapes of Bones at a Joint: Application to the Shoulder
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
1
), pp.
19
30
.10.1080/10255840701552721
14.
Rao
,
C.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
,
Kim
,
R. H.
, and
Laz
,
P. J.
,
2013
, “
A Statistical Finite Element Model of the Knee Accounting for Shape and Alignment Variability
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1450
1456
.10.1016/j.medengphy.2013.03.021
15.
Laporte
,
S.
,
Skalli
,
W.
,
de Guise
,
J. A.
,
Lavaste
,
F.
, and
Mitton
,
D.
,
2003
, “
A Biplanar Reconstruction Method Based on 2D and 3D Contours: Application to the Distal Femur
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
1
), pp.
1
6
.10.1080/1025584031000065956
16.
Baka
,
N.
,
Kaptein
,
B. L.
,
Giphart
,
J. E.
,
Staring
,
M.
,
de Bruijne
,
M.
,
Lelieveldt
,
B. P.
, and
Valstar
,
E.
,
2014
, “
Evaluation of Automated Statistical Shape Model Based Knee Kinematics From Biplane Fluoroscopy
,”
J. Biomech.
,
47
(
1
), pp.
122
129
.10.1016/j.jbiomech.2013.09.022
17.
Li
,
G.
,
Van de Velde
,
S. K.
, and
Bingham
,
J. T.
,
2008
, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
7
), pp.
1616
1622
.10.1016/j.jbiomech.2008.01.034
18.
Tashman
,
S.
,
2008
, “
Comments on “Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
15
), pp.
3290
3291
.10.1016/j.jbiomech.2008.07.038
19.
Bingham
,
J.
, and
Li
,
G.
,
2006
, “
An Optimized Image Matching Method for Determining In-Vivo TKA Kinematics With a Dual-Orthogonal Fluoroscopic Imaging System
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
588
595
.10.1115/1.2205865
20.
Adams
,
R.
, and
Bischof
,
L.
,
1994
, “
Seeded Region Growing
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
16
(
6
), pp.
641
647
.10.1109/34.295913
21.
Li
,
G.
,
Wan
,
L.
, and
Kozanek
,
M.
,
2008
, “
Determination of Real-Time In-Vivo Cartilage Contact Deformation in the Ankle Joint
,”
J. Biomech.
,
41
(
1
), pp.
128
136
.10.1016/j.jbiomech.2007.07.006
22.
Tsai
,
T. Y.
,
Li
,
J. S.
,
Wang
,
S.
,
Li
,
P.
,
Kwon
,
Y. M.
, and
Li
,
G.
,
2013
, “
Principal Component Analysis in Construction of 3D Human Knee Joint Models Using a Statistical Shape Model Method
,”
Comput. Methods Biomech. Biomed. Eng.
, (in production).10.1080/10255842.2013.843676
23.
Wold
,
S.
,
Esbensen
,
K.
, and
Geladi
,
P.
,
1987
, “
Principal Component Analysis
,”
Chemom. Intell. Labo. Syst.
,
2
(
1
), pp.
37
52
.10.1016/0169-7439(87)80084-9
24.
Tang
,
T. S.
, and
Ellis
,
R. E.
,
2005
, “
2D/3D Deformable Registration Using a Hybrid Atlas
,”
Med. Image Comput. Comput. Assist. Interv.
,
8
(
2
), pp.
223
230
.
25.
Zheng
,
G.
, and
Schumann
,
S.
,
2009
, “
3D Reconstruction of a Patient-Specific Surface Model of the Proximal Femur From Calibrated X-Ray Radiographs: A Validation Study
,”
Med. Phys.
,
36
(
4
), pp.
1155
1166
.10.1118/1.3089423
26.
Zhu
,
Z.
, and
Li
,
G.
,
2012
, “
An Automatic 2D–3D Image Matching Method for Reproducing Spatial Knee Joint Positions Using Single or Dual Fluoroscopic Images
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1245
1256
.10.1080/10255842.2011.597387
27.
Defrate
,
L. E.
,
Papannagari
,
R.
,
Gill
,
T. J.
,
Moses
,
J. M.
,
Pathare
,
N. P.
, and
Li
,
G.
,
2006
, “
The Six Degrees of Freedom Kinematics of the Knee After Anterior Cruciate Ligament Deficiency: An in vivo Imaging Analysis
,”
Am. J. Sports Med.
,
34
(
8
), pp.
1240
1246
.10.1177/0363546506287299
28.
Tashman
,
S.
,
Collon
,
D.
,
Anderson
,
K.
,
Kolowich
,
P.
, and
Anderst
,
W.
,
2004
, “
Abnormal Rotational Knee Motion During Running After Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
,
32
(
4
), pp.
975
983
.10.1177/0363546503261709
29.
Zheng
,
G.
,
Nolte
,
L. P.
, and
Ferguson
,
S. J.
,
2011
, “
Scaled, Patient-Specific 3D Vertebral Model Reconstruction Based on 2D Lateral Fluoroscopy
,”
Int. J. Comput. Assist. Radiol. Surg.
,
6
(
3
), pp.
351
366
.10.1007/s11548-010-0515-7
30.
Zheng
,
G.
, “
Statistical Shape Model-Based Reconstruction of a Scaled, Patient-Specific Surface Model of the Pelvis From a Single Standard AP X-Ray Radiograph
,”
Med Phys.
,
37
(
4
), pp.
1424
1439
.10.1118/1.3327453
31.
Fleute
,
M.
,
Lavallee
,
S.
, and
Julliard
,
R.
,
1999
, “
Incorporating a Statistically Based Shape Model Into a System for Computer-Assisted Anterior Cruciate Ligament Surgery
,”
Med. Image Anal.
,
3
(
3
), pp.
209
222
.10.1016/S1361-8415(99)80020-6
You do not currently have access to this content.