In vitro active shoulder motion simulation can provide improved understanding of shoulder biomechanics; however, accurate simulators using advanced control theory have not been developed. Therefore, our objective was to develop and evaluate a simulator which uses real-time kinematic feedback and closed loop proportional integral differential (PID) control to produce motion. The simulator’s ability to investigate a clinically relevant variable—namely muscle loading changes resulting from reverse total shoulder arthroplasty (RTSA)—was evaluated and compared to previous findings to further demonstrate its efficacy. Motion control of cadaveric shoulders was achieved by applying continuously variable forces to seven muscle groups. Muscle forces controlling each of the three glenohumeral rotational degrees of freedom (DOF) were modulated using three independent PID controllers running in parallel, each using measured Euler angles as their process variable. Each PID controller was configured and tuned to control the loading of a set of muscles which, from previous in vivo investigations, were found to be primarily responsible for movement in the PID’s DOF. The simulator’s ability to follow setpoint profiles for abduction, axial rotation, and horizontal extension was assessed using root mean squared error (RMSE) and average standard deviation (ASD) for multiple levels of arm mass replacement. A specimen was then implanted with an RTSA, and the effect of joint lateralization (0, 5, 10 mm) on the total deltoid force required to produce motion was assessed. Maximum profiling error was <2.1 deg for abduction and 2.2 deg for horizontal extension with RMSE of <1 deg. The nonprofiled DOF were maintained to within 5.0 deg with RMSE <1.0 deg. Repeatability was high, with ASDs of <0.31 deg. RMSE and ASD were similar for all levels of arm mass replacement (0.73–1.04 and 0.14–0.22 deg). Lateralizing the joint’s center of rotation (CoR) increased total deltoid force by up to 8.5% body weight with the maximum early in abduction. This simulator, which is the first to use closed loop control, accurately controls the shoulder’s three rotational DOF with high repeatability, and produces results that are in agreement with previous investigations. This simulator’s improved performance, in comparison to others, increases the statistical power of its findings and thus its ability to provide new biomechanical insights.

References

1.
Itoi
,
E.
,
Motzkin
,
N. E.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
1994
, “
Contribution of Axial Arm Rotation to Humeral Head Translation
,”
Am. J. Sports Med.
,
22
(
4
), pp.
499
503
.10.1177/036354659402200411
2.
Wellmann
,
M.
,
Petersen
,
W.
,
Zantop
,
T.
,
Herbort
,
M.
,
Kobbe
,
P.
,
Raschke
,
M. J.
, and
Hurschler
,
C.
,
2009
, “
Open Shoulder Repair of Osseous Glenoid Defects: Biomechanical Effectiveness of the Latarjet Procedure Versus a Contoured Structural Bone Graft
,”
Am. J. Sports Med.
,
37
(
1
), pp.
87
94
.10.1177/0363546508326714
3.
Yu
,
J.
,
McGarry
,
M. H.
,
Lee
,
Y. S.
,
Duong
,
L. V.
, and
Lee
,
T. Q.
,
2005
, “
Biomechanical Effects of Supraspinatus Repair on the Glenohumeral Joint
,”
J. Shoulder Elbow Surg.
,
14
(Suppl. 1), pp.
65S
71S
.10.1016/j.jse.2004.09.019
4.
Debski
,
R. E.
,
Wong
,
E. K.
,
Woo
,
S. L.
,
Sakane
,
M.
,
Fu
,
F. H.
, and
Warner
,
J. J.
,
1999
, “
In Situ Force Distribution in the Glenohumeral Joint Capsule During Anterior–Posterior Loading
,”
J. Orthop. Res.
,
17
(
5
), pp.
769
776
.10.1002/jor.1100170523
5.
Entezari
,
V.
,
Trechsel
,
B. L.
, and
Dow
,
W. A.
,
2012
, “
Design and Manufacture of a Novel System to Simulate the Biomechanics of Basic and Pitching Shoulder Motion
,”
Bone Jt. Res.
,
1
(
5
), pp.
78
85
.10.1302/2046-3758.15.2000051
6.
Giles
,
J. W.
,
Boons
,
H. W.
,
Ferreira
,
L. M.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2011
, “
The Effect of the Conjoined Tendon of the Short Head of the Biceps and Coracobrachialis on Shoulder Stability and Kinematics During In-Vitro Simulation
,”
J. Biomech.
,
44
(
6
) pp.
1192
1195
.10.1016/j.jbiomech.2011.02.012
7.
McMahon
,
P. J.
,
Chow
,
S.
,
Sciaroni
,
L.
,
Yang
,
B. Y.
, and
Lee
,
T. Q.
,
2003
, “
A Novel Cadaveric Model for Anterior–Inferior Shoulder Dislocation Using Forcible Apprehension Positioning
,”
J. Rehabil. Res. Dev.
,
40
(
4
) pp.
349
359
.10.1682/JRRD.2003.07.0349
8.
Hansen
,
M. L.
,
Otis
,
J. C.
,
Johnson
,
J. S.
,
Cordasco
,
F. A.
,
Craig
,
E. V.
, and
Warren
,
R. F.
,
2008
, “
Biomechanics of Massive Rotator Cuff Tears: Implications for Treatment
,”
J. Bone Jt. Surg. Am.
,
90
(
2
) pp.
316
325
.10.2106/JBJS.F.00880
9.
Alexander
,
S.
,
Southgate
,
D. F.
,
Bull
,
A. M.
, and
Wallace
,
A. L.
,
2013
, “
The Role of Negative Intraarticular Pressure and the Long Head of Biceps Tendon on Passive Stability of the Glenohumeral Joint
,”
J. Shoulder Elbow Surg.
,
22
(
1
), pp.
94
101
.10.1016/j.jse.2012.01.007
10.
Ackland
,
D. C.
,
Pak
,
P.
,
Richardson
,
M.
, and
Pandy
,
M. G.
,
2008
, “
Moment Arms of the Muscles Crossing the Anatomical Shoulder
,”
J. Anat.
,
213
(
4
), pp.
383
390
.10.1111/j.1469-7580.2008.00965.x
11.
Kedgley
,
A. E.
,
Mackenzie
,
G. A.
,
Ferreira
,
L. M.
,
Drosdowech
,
D. S.
,
King
,
G. J.
,
Faber
,
K. J.
, and
Johnson
,
J. A.
,
2007
, “
The Effect of Muscle Loading on the Kinematics of in vitro Glenohumeral Abduction
,”
J. Biomech.
,
40
(
13
), pp.
2953
2960
.10.1016/j.jbiomech.2007.02.008
12.
Debski
,
R. E.
,
McMahon
,
P. J.
,
Thompson
,
W. O.
,
Woo
,
S. L.
,
Warner
,
J. J.
, and
Fu
,
F. H.
,
1995
, “
A New Dynamic Testing Apparatus to Study Glenohumeral Joint Motion
,”
J. Biomech.
,
28
(
7
), pp.
869
874
.10.1016/0021-9290(95)95276-B
13.
Wuelker
,
N.
,
Wirth
,
C. J.
,
Plitz
,
W.
, and
Roetman
,
B.
,
1995
, “
A Dynamic Shoulder Model: Reliability Testing and Muscle Force Study
,”
J. Biomech.
,
28
(
5
), pp.
489
499
.10.1016/0021-9290(94)E0006-O
14.
Kedgley
,
A. E.
,
Mackenzie
,
G. A.
,
Ferreira
,
L. M.
,
Johnson
,
J. A.
, and
Faber
,
K. J.
,
2007
, “
In Vitro Kinematics of the Shoulder Following Rotator Cuff Injury
,”
Clin. Biomech.
,
22
(
10
), pp.
1068
1073
.10.1016/j.clinbiomech.2007.06.005
15.
Henninger
,
H. B.
,
Barg
,
A.
,
Anderson
,
A. E.
,
Bachus
,
K. N.
,
Tashjian
,
R. Z.
, and
Burks
,
R. T.
,
2012
, “
Effect of Deltoid Tension and Humeral Version in Reverse Total Shoulder Arthroplasty: A Biomechanical Study
,”
J. Shoulder Elbow Surg.
,
21
(
4
), pp.
483
490
.10.1016/j.jse.2011.01.040
16.
Magermans
,
D. J.
,
Chadwick
,
E. K.
,
Veeger
,
H. E.
, and
van der Helm
,
F. C.
,
2005
, “
Requirements for Upper Extremity Motions During Activities of Daily Living
,”
Clin. Biomech.
,
20
(
6
), pp.
591
599
.10.1016/j.clinbiomech.2005.02.006
17.
Speer
,
K. P.
,
Hannafin
,
J. A.
,
Altchek
,
D. W.
, and
Warren
,
R. F.
,
1994
, “
An Evaluation of the Shoulder Relocation Test
,”
Am. J. Sports Med.
,
22
(
2
), pp.
177
183
.10.1177/036354659402200205
18.
Balg
,
F.
,
Boulianne
,
M.
, and
Boileau
,
P.
,
2006
, “
Bicipital Groove Orientation: Considerations for the Retroversion of a Prosthesis in Fractures of the Proximal Humerus
,”
J Shoulder Elbow Surg.
,
15
(
2
), pp.
195
198
.10.1016/j.jse.2005.08.014
19.
Giles
,
J. W.
,
Boons
,
H. W.
,
Elkinson
,
I.
,
Faber
,
K. J.
,
Ferreira
,
L. M.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2013
, “
Does the Dynamic Sling Effect of the Latarjet Procedure Improve Shoulder Stability? A Biomechanical Evaluation
,”
J. Shoulder Elbow Surg.
,
22
(
6
), pp.
821
827
.10.1016/j.jse.2012.08.002
20.
Forte
,
F. C.
,
de Castro
,
M. P.
,
de Toledo
,
J. M.
,
Ribeiro
,
D. C.
, and
Loss
,
J. F.
,
2009
, “
Scapular Kinematics and Scapulohumeral Rhythm During Resisted Shoulder Abduction—Implications for Clinical Practice
,”
Phys. Ther. Sport
,
10
(
3
), pp.
105
111
.10.1016/j.ptsp.2009.05.005
21.
McClure
,
P. W.
,
Michener
,
L. A.
, and
Karduna
,
A. R.
,
2006
, “
Shoulder Function and Three-Dimensional Scapular Kinematics in People With and Without Shoulder Impingement Syndrome
,”
Phys. Ther.
,
86
(
8
), pp.
1075
1090
. Available at: http://ptjournal.apta.org/content/86/8.toc
22.
Wu
,
G.
,
van der Helm
,
F. C.
, and
Veeger
,
H. E.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
23.
Woltring
,
H.
,
1990
,
Biomechanics of Human Movement, Applications in Rehabilitation, Sport and Ergonomics
,
Bertec Corporation
,
Worthington, OH
, pp.
203
237
.
24.
Apreleva
,
M.
,
Hasselman
,
C. T.
,
Debski
,
R. E.
,
Fu
,
F. H.
,
Woo
,
S. L.
, and
Warner
,
J. J.
,
1998
, “
A Dynamic Analysis of Glenohumeral Motion After Simulated Capsulolabral Injury. A Cadaver Model
,”
J. Bone Jt. Surg. Am.
,
80
(
4
), pp.
474
480
.10.1302/0301-620X.80B3.8285
25.
Halder
,
A. M.
,
Halder
,
C. G.
,
Zhao
,
K. D.
,
O'Driscoll
,
S. W.
,
Morrey
,
B. F.
, and
An
,
K. N.
,
2001
, “
Dynamic Inferior Stabilizers of the Shoulder Joint
,”
Clin. Biomech.
,
16
(
2
), pp.
138
143
.10.1016/S0268-0033(00)00077-2
26.
Sharkey
,
N. A.
,
Marder
,
R. A.
, and
Hanson
,
P. B.
,
1994
, “
The Entire Rotator Cuff Contributes to Elevation of the Arm
,”
J. Orthop. Res.
,
12
(
5
), pp.
699
708
.10.1002/jor.1100120513
27.
Hsu
,
H. C.
,
Luo
,
Z. P.
,
Cofield
,
R. H.
, and
An
,
K. N.
,
1997
, “
Influence of Rotator Cuff Tearing on Glenohumeral Stability
,”
J. Shoulder Elbow Surg.
,
6
(
5
), pp.
413
422
.10.1016/S1058-2746(97)70047-8
28.
Ziegler
,
J.
, and
Nichols
,
N.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
,
64
(
11
) pp.
759
768
.
29.
McQuade
,
K. J.
, and
Smidt
,
G. L.
,
1998
, “
Dynamic Scapulohumeral Rhythm: The Effects of External Resistance during Elevation of the Arm in the Scapular Plane
,”
J. Orthop. Sports Phys. Ther
,
27
(
2
), pp.
125
133
.10.2519/jospt.1998.27.2.125
30.
Acevedo
,
D. C.
,
VanBeek
,
C.
,
Lazarus
,
M. D.
,
Williams
,
G. R.
, and
Abboud
,
J. A.
,
2014
, “
Reverse Shoulder Arthroplasty for Proximal Humeral Fractures: Update on Indications, Technique, and Results
,”
J. Shoulder Elbow Surg.
,
23
(
2
), pp.
279
289
.10.1016/j.jse.2013.10.003
31.
Cuff
,
D.
,
Pupello
,
D.
,
Virani
,
N.
,
Levy
,
J.
, and
Frankle
,
M.
,
2008
, “
Reverse Shoulder Arthroplasty for the Treatment of Rotator Cuff Deficiency
,”
J. Bone Jt. Surg. Am.
,
90
(
6
), pp.
1244
1251
.10.2106/JBJS.G.00775
32.
Boguski
,
R. M.
,
Miller
,
B. S.
,
Carpenter
,
J. E.
,
Mendenhall
,
S.
, and
Hughes
,
R. E.
,
2013
, “
Variation in Use of Reverse Total Shoulder Arthroplasty Across Hospitals
,”
J. Shoulder Elbow Surg.
,
22
(
12
), pp.
1633
1638
.10.1016/j.jse.2013.09.002
33.
de Wilde
,
L. F.
,
Poncet
,
D.
,
Middernacht
,
B.
, and
Ekelund
,
A.
,
2010
, “
Prosthetic Overhang is the most Effective Way to Prevent Scapular Conflict in a Reverse Total Shoulder Prosthesis
,”
Acta Orthop.
,
81
(
6
), pp.
719
726
.10.3109/17453674.2010.538354
34.
Henninger
,
H. B.
,
King
,
F. K.
,
Tashjian
,
R. Z.
, and
Burks
,
R. T.
,
2013
, “
Biomechanical Comparison of Reverse Total Shoulder Arthroplasty Systems in Soft Tissue–Constrained Shoulders
,”
J. Shoulder Elbow Surg.
,
23
(
5
), pp.
e108
e117
.10.1016/j.jse.2013.08.008
35.
Kontaxis
,
A.
, and
Johnson
,
G.
,
2009
, “
The Biomechanics of Reverse Anatomy Shoulder Replacement—A Modelling Study
,”
Clin. Biomech.
,
24
(
3
), pp.
254
260
.10.1016/j.clinbiomech.2008.12.004
36.
Terrier
,
A.
,
Reist
,
A.
,
Merlini
,
F.
, and
Farron
,
A.
,
2008
, “
Simulated Joint and Muscle Forces in Reversed and Anatomic Shoulder Prostheses
,”
J. Bone Joint Surg. Br.
,
90
(
6
), pp.
751
–756
.10.1302/0301-620X.90B6.19708
37.
Ackland
,
D. C.
,
Roshan-Zamir
,
S.
,
Richardson
,
M.
, and
Pandy
,
M. G.
,
2011
, “
Muscle and Joint-Contact Loading at the Glenohumeral Joint After Reverse Total Shoulder Arthroplasty
,”
J. Orthop. Res.
,
29
(
12
), pp.
1850
1858
.10.1002/jor.21437
38.
Henninger
,
H. B.
,
Barg
,
A.
,
Anderson
,
A. E.
,
Bachus
,
K. N.
,
Burks
,
R. T.
, and
Tashjian
,
R. Z.
,
2012
, “
Effect of Lateral Offset Center of Rotation in Reverse Total Shoulder Arthroplasty: A Biomechanical Study
,”
J. Shoulder Elbow Surg.
,
21
(
9
), pp.
1128
1135
.10.1016/j.jse.2011.07.034
39.
Oizumi
,
N.
,
Tadano
,
S.
,
Narita
,
Y.
,
Suenaga
,
N.
,
Iwasaki
,
N.
, and
Minami
,
A.
,
2006
, “
Numerical Analysis of Cooperative Abduction Muscle Forces in a Human Shoulder Joint
,”
J. Shoulder Elbow Surg.
,
15
(
3
), pp.
331
338
.10.1016/j.jse.2005.08.012
40.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
) pp.
136
144
.10.1115/1.3138397
41.
Amadi
,
H. O.
, and
Bull
,
A. M.
,
2010
, “
A Motion-Decomposition Approach to Address Gimbal Lock in the 3-Cylinder Open Chain Mechanism Description of a Joint Coordinate System at the Glenohumeral Joint
,”
J. Biomech.
,
43
(
16
), pp.
3232
3236
.10.1016/j.jbiomech.2010.07.034
You do not currently have access to this content.