Numerical finite element (FE) models of the neck have been developed to simulate occupant response and predict injury during motor vehicle collisions. However, there is a paucity of data on the response of young cervical spine segments under dynamic loading in flexion and extension, which is essential for the development or validation of tissue-level FE models. This limitation was identified during the development and validation of the FE model used in this study. The purpose of this study was to measure the high rotation rate loading response of human cervical spine segments in flexion and extension, and to investigate a new tissue-level FE model of the cervical spine with the experimental data to address a limitation in available data. Four test samples at each segment level from C2–C3 to C7–T1 were dissected from eight donors and were tested to 10 deg of rotation at 1 and 500 deg/s in flexion and extension using a custom built test apparatus. There was strong evidence (p < 0.05) of increased stiffness at the higher rotation rate above 4 deg of rotation in flexion and at 8 deg and 10 deg of rotation in extension. Cross-correlation software, Cora, was used to evaluate the fit between the experimental data and model predictions. The average rating was 0.771, which is considered to demonstrate a good correlation to the experimental data.

References

1.
Stein
,
D. M.
,
Kufera
,
J. A.
,
Ho
,
S. M.
,
Ryb
,
G. E.
,
Dischinger
,
P. C.
,
O'Connor
,
J. V.
, and
Scalea
,
T. M.
,
2011
, “
Occupant and Crash Characteristics for Case Occupants With Cervical Spine Injuries Sustained in Motor Vehicle Collisions
,”
J. Trauma
,
70
(
2
), pp.
299
309
.10.1097/TA.0b013e3181f8aa91
2.
Wang
,
M. C.
,
Pintar
,
F. A.
,
Yoganandan
,
Y.
, and
Maiman
,
D. J.
,
2009
, “
The Continued Burden of Spine Fractures After Motor Vehicle Crashes
,”
J. Neurosurg. Spine
,
10
(2), pp.
86
92
.10.3171/SPI.2008.10.08279
3.
Reed
,
M. A.
,
Naftel
,
R. P.
,
Carter
,
S.
,
MacLennan
,
P. A.
,
McGwin
,
G.
, and
Rue
,
L. W.
, III
,
2006
, “
Motor Vehicle Restraint System Use and Risk of Spine Injury
,”
Traffic Inj. Prev.
,
7
(
3
), pp.
256
263
.10.1080/15389580600660641
4.
Hasler
,
R. M.
,
Exadaktylos
,
A. K.
,
Bouamra
,
O.
,
Benneker
,
L. M.
,
Clancy
,
M.
,
Sieber
,
R.
,
Zimmermann
,
H.
, and
Lecky
,
F.
,
2011
, “
Epidemiology and Predictors of Spinal Injury in Adult Major Trauma Patients: European Cohort Study
,”
Eur. Spine J.
,
20
(12), pp.
2174
2180
.10.1007/s00586-011-1866-7
5.
Jackson
,
A. B.
,
Dijkers
,
M.
,
Devivo
,
M. J.
, and
Poczatek
,
R. B.
,
2004
, “
A Demographic Profile of New Traumatic Spinal Cord Injuries: Change and Stability Over 30 Years
,”
Arch. Phys. Med. Rehabil.
,
85
(
11
), pp.
1740
1748
.10.1016/j.apmr.2004.04.035
6.
De Jager
,
M.
,
Sauren
,
A.
,
Thurnnissen
,
J.
, and
Wismans
,
J.
,
1996
, “
A Global and a Detailed Mathematical Model for Head-Neck Dynamics
,” Proc. 40th Stapp Car Crash Conference, Albuquerque, NM, Society of Automative Engineers, Inc.,
SAE Technical Paper No. 962430
, pp.
269
281
.10.4271/962430
7.
Van der Horst
,
M. J.
,
2002
, “
Human Head Neck Response in Frontal, Lateral and Rear End Impact Loading—Modelling and Validation
,” Ph.D. thesis, University of Eindhoven, Eindhoven.
8.
Halldin
,
P. H.
,
Brolin
,
K.
,
Kleiven
,
S.
,
von Holst
,
H.
,
Jakobsson
,
L.
, and
Palmertz
,
C.
,
2000
, “
Investigation of Conditions That Affect Neck Compression-Flexion Injuries Using Numerical Techniques
,” Proc. 44th Stapp Car Crash Conference, Atlanta, GA, Society of Automotive Engineers, Inc., SAE Technical Paper No. 2000-01-SC10, pp.
127
138
.
9.
Meyer
,
F.
,
Bourdet
,
N.
,
Deck
,
C.
, and
Willinger
,
R.
,
2004
, “
Human Neck Finite Element Model Development and Validation Against Original Experimental Data
,” Proc. 48th Stapp Car Crash Conference, Nashville, TN, Society of Automotive Engineers, Inc., SAE Technical Paper No. 2004-22-0008, pp.
177
206
.
10.
Zhang
,
Q. H.
,
Teo
,
E. C.
,
Ng
,
H. W.
, and
Lee
,
V. S.
,
2006
, “
Finite Element Analysis of Moment-Rotation Relationships for Human Cervical Spine
,”
J. Biomech.
,
39
(
1
), pp.
189
193
.10.1016/j.jbiomech.2004.10.029
11.
Kallemeyn
,
N.
,
Gandhi
,
A.
,
Kode
,
S.
, and
Shivanna
,
K.
,
2010
, “
Validation of a C2–C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data
,”
Med. Eng. Phys.
,
32
(
5
), pp.
482
489
.10.1016/j.medengphy.2010.03.001
12.
Panzer
,
M. B.
,
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2011
, “
Cervical Spine Response in Frontal Crash
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1147
1159
.10.1016/j.medengphy.2011.05.004
13.
Gadd
,
C. W.
,
1966
, “
Use of a Weighted-Impulse Criterion for Estimating Injury Hazard
,” Proc. 10th Stapp Car Crash Conference, Hollomon Air Force Base, NM, Society of Automotive Engineers, Inc.,
SAE Technical Paper No. 660793
, pp.
164
174
.10.4271/660793
14.
Versace
,
J.
,
1971
, “
A Review of the Severity Index
,” Proc. 15th Stapp Car Crash Conference, Coronado, CA, Society of Automotive Engineers, Inc.,
SAE Technical Paper No. 710881
, pp.
771
796
.10.4271/710881
15.
Nahum
,
A. M.
, and
Melvin
,
J. W.
,
1993
,
Accidental Injury: Biomechanics and Prevention
, 2nd ed.,
Springer
,
New York
.
16.
Gayzik
,
F. S.
,
2012
, “
Completion of Phase I Development of the Global Human Body Models Consortium Mid-Sized Male Full Body Finite Element Model
,” available at http://www.ghbmc.com/GHBMCStatusPhase1.pdf (Accessed Dec 2013).
17.
Moroney
,
S. P.
,
Schultz
,
A. B.
,
Miller
,
J. A.
, and
Andersson
,
G. B.
,
1988
, “
Load–Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
,
21
(
9
), pp.
769
779
.10.1016/0021-9290(88)90285-0
18.
Goel
,
V. K.
,
Clark
,
C. R.
,
Gallaes
,
K.
, and
Liu
,
Y. K.
,
1988
, “
Moment-Rotation Relationships of the Ligamentous Occipito-Atlanto-Axial Complex
,”
J. Biomech.
,
21
(8), pp.
673
680
.10.1016/0021-9290(88)90204-7
19.
Wen
,
N.
,
Lavaste
,
F.
,
Santin
,
J. J.
, and
Lassau
,
J. P.
,
1993
, “
Three-Dimensional Biomechanical Properties of the Human Cervical Spine In Vitro
,”
Eur. Spine J.
,
2
(1), pp.
2
11
.10.1007/BF00301048
20.
Camacho
,
D. L. A.
,
Nightingale
,
R. W.
,
Robinette
,
J. J.
,
Vanguri
,
S. K.
,
Coates
,
D. J.
, and
Myers
,
B. S.
,
1997
, “
Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact
,” Proc. 41st Stapp Car Crash Conference, Lake Buena Vista, FL, Society of Automotive Engineers, Inc.,
SAE Technical Paper No. 973345
, pp.
473
486
.10.4271/973345
21.
Winkelstein
,
B. A.
,
Nightingale
,
R. W.
, and
Myers
,
B. S.
,
2000
, “
A Biomechanical Investigation of the Cervical Facet Capsule and Its Role in Whiplash Injury
,”
Spine
,
25
(
10
), pp.
1238
1246
.10.1097/00007632-200005150-00007
22.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.10.1016/j.jbiomech.2004.11.014
23.
Voo
,
L. M.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Liu
,
Y. K.
,
1998
, “
Static and Dynamic Bending Responses of the Human Cervical Spine
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
693
696
.10.1115/1.2834880
24.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
,
2002
, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
,
35
(
6
), pp.
725
732
.10.1016/S0021-9290(02)00037-4
25.
Nightingale
,
R. W.
,
Chancey
,
C. V.
,
Ottaviano
,
D.
,
Luck
,
J. F.
,
Tran
,
L.
,
Prange
,
M.
, and
Myers
,
B. S.
,
2007
, “
Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments
,”
J. Biomech.
,
40
(
3
), pp.
535
542
.10.1016/j.jbiomech.2006.02.015
26.
Thunnissen
,
J. G. M.
,
Wismans
,
J.
,
Ewing
,
C. L.
, and
Thomas
,
D. J.
,
1995
, “
Human Volunteer Head-Neck Response in Frontal Flexion: A New Analysis
,” Proc. 39th Stapp Car Crash Conference, San Diego, CA, Society of Automotive Engineers, Inc.,
SAE Technical Paper No. 952721
, pp.
3065
3086
.10.4271/952721
27.
Panjabi
,
M. M.
,
Colewicki
,
J.
,
Nibu
,
K.
,
Grauer
,
J. N.
,
Babat
,
L. B.
, and
Dvorak
,
J.
,
1998
, “
Mechanism of Whiplash Injury
,”
Clin. Biomech.
,
13
(4–5), pp.
239
249
.10.1016/S0268-0033(98)00033-3
28.
Deng
,
B.
,
Begeman
,
P. C.
,
Yang
,
K. H.
,
Tashman
,
S.
, and
King
,
A. I.
,
2000
, “
Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts
,” Proc. 44th Stapp Car Crash Conference, Atlanta, GA, Society of Automotive Engineers, Inc., SAE Technical Paper No. 2000-01-SC13, pp.
171
188
.
29.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Stemper
,
B. D.
,
Schlick
,
M. B.
,
Philippens
,
M.
, and
Wismans
,
J.
,
2000
, “
Biomechanics of Human Occupants in Simulated Rear Crashes: Documentation of Neck Injuries and Comparison of Injury Criteria
,” Proc. 44th Stapp Car Crash Conference, Atlanta, GA, Society of Automotive Engineers, Inc., SAE Technical Paper No. 2000-01-SC14, pp.
189
204
.
30.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
(
24
), pp.
2692
2700
.10.1097/00007632-200112150-00012
31.
Panjabi
,
M. M.
,
Ito
,
S.
,
Ivancic
,
P. C.
, and
Rubin
,
W.
,
2005
, “
Evaluation of the Intervertebral Neck Injury Criterion Using Simulated Rear Impacts
,”
J. Biomech.
,
38
(8), pp.
1694
1701
.10.1016/j.jbiomech.2004.07.015
32.
Robertson
,
A.
,
Branfoot
,
T.
,
Barlow
,
I. F.
, and
Giannoudis
,
P. V.
,
2002
, “
Spinal Injury Patterns Resulting From Car and Motorcycle Accidents
,”
Spine
,
27
(24), pp.
2825
2830
.10.1097/00007632-200212150-00019
33.
Iida
,
T.
,
Abumi
,
K.
,
Kotani
,
Y.
, and
Kaneda
,
K.
,
2002
, “
Effects of Aging and Spinal Degeneration on Mechanical Properties of Lumbar Supraspinous and Interspinous Ligaments
,”
Spine
,
2
(2), pp.
95
100
.10.1016/S1529-9430(02)00142-0
34.
Stemper
,
B. D.
,
Board
,
D.
,
Yoganandan
,
N.
, and
Wolfla
,
C. E.
,
2010
, “
Biomechanical Properties of Human Thoracic Spine Disc Segments
,”
J. Craniovertebral Junction Spine
,
1
(
1
), pp.
18
22
.10.4103/0974-8237.65477
35.
Christiansen
,
B. A.
,
Kopperdahl
,
D. L.
,
Kiel
,
D. P.
,
Keaveny
,
T. M.
, and
Bouxsein
,
M. L.
,
2011
, “
Mechanical Contributions of the Cortical and Trabecular Compartments Contribute to Differences in Age-Related Changes in Vertebral Body Strength in Men and Women Assessed by QCT-Based Finite Element Analysis
,”
J. Bone Miner. Res.
,
26
(5), pp.
974
983
.10.1002/jbmr.287
36.
Amevo
,
B.
,
Worth
,
D.
, and
Bogduk
,
N.
,
1991
, “
Instantaneous Axes of Rotation of the Typical Cervical Motion Segments: A Study in Normal Volunteers
,”
Clin. Biomech.
,
6
(2), pp.
111
117
.10.1016/0268-0033(91)90008-E
37.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4–C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
(4), pp.
480
490
.10.1016/j.jbiomech.2008.11.036
38.
Fung
,
Y.-C.
,
1993
, “
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer
,
New York
.
39.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Geer
,
C. P.
,
Wuertzer
,
S. D.
,
Martin
,
R. S.
, and
Stitzel
,
J. D.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.10.1007/s10439-011-0359-5
40.
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2012
, “
Investigation of Whiplash Injuries in the Upper Cervical Spine Using a Detailed Neck Model
,”
J. Biomech.
,
45
(
6
), pp.
1098
1102
.10.1016/j.jbiomech.2012.01.016
41.
DeWit
,
J. A.
, and
Cronin
,
D. S.
,
2012
, “
Cervical Spine Segment Finite Element Model for Traumatic Injury Prediction
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
138
150
.10.1016/j.jmbbm.2012.02.015
42.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
216
226
.10.1016/j.jmbbm.2012.02.004
43.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
21st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV)
,
Stuttgart, Germany
, June 15–18, Paper No. 09-0407.
44.
Xu
,
L.
,
Agaram
,
V.
,
Rouhana
,
S.
,
Hultman
,
R. W.
,
Kostyniuk
,
G. W.
,
McCleary
,
J.
,
Mertz
,
H.
,
Nusholtz
,
G. S.
, and
Scherer
,
R.
,
2000
, “
Repeatability Evaluation of the Pre-Prototype NHTSA Advanced Dummy Compared to the Hybrid III
,” SAE World Congress,
SAE Paper No. 2000-01-0165
.10.4271/2000-01-0165
45.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
(
4
), pp.
452
461
.10.1097/00007632-199602150-00009
46.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine
,
20
(
24
), pp.
2690
2701
.10.1097/00007632-199512150-00010
47.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1997
, “
The Viscoelastic Behavior of the Non-Degenerate Human Lumbar Nucleus Pulpopus in Shear
,”
J. Biomech.
,
30
(
10
), pp.
1005
1013
.10.1016/S0021-9290(97)00069-9
48.
Skrzypiec
,
D. M.
,
Klein
,
A.
,
Bishop
,
N. E.
,
Stahmer
,
F.
,
Püschel
,
K.
,
Seidel
,
H.
,
Morlock
,
M. M.
, and
Huber
,
G.
,
2012
, “
Shear Strength of the Human Lumbar Spine
,”
Clin. Biomech.
,
27
(
7
), pp.
646
651
.10.1016/j.clinbiomech.2012.04.003
49.
Nachemson
,
A. L.
,
Schultz
,
A. B.
, and
Berkson
,
M. H.
,
1979
, “
Mechanical Properties of Human Lumbar Spine Motion Segments: Influences of Age, Sex, Disc Level, and Degeneration
,”
Spine
,
4
(
1
), pp.
1
8
.10.1097/00007632-197901000-00001
50.
Shim
,
V. P. W.
,
Liu
,
J. F.
, and
Lee
,
V. S.
,
2005
, “
A Technique for Dynamic Tensile Testing of Human Cervical Spine Ligaments
,”
Exp. Mech.
,
36
, pp.
1281
1289
.10.1007/s11340-006-5865-2
51.
Ivancic
,
P.
,
Coe
,
M. P.
,
Ndu
,
A. B.
,
Tominaga
,
Y.
,
Carlson
,
E. J.
,
Rubin
,
W.
,
Dipl-Ing
,
F. H.
, and
Panjabi
,
M. M.
,
2007
, “
Dynamic Mechanical Properties of Intact Human Cervical Spine Ligaments
,”
Spine J.
,
7
(6), pp.
659
665
.10.1016/j.spinee.2006.10.014
52.
Bass
,
C. R.
,
Lucas
,
S. R.
,
Salzar
,
R. S.
,
Oyen
,
M. L.
,
Planchak
,
C.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2007
, “
Failure Properties of Cervical Spinal Ligaments Under Fast Strain Rate Deformations
,”
Spine
,
32
(
1
), pp.
E7
E13
.10.1097/01.brs.0000251058.53905.eb
53.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Annulus Fibrosus
,”
Biomech. Model Mechaniobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
54.
Dvorak
,
J.
,
Panjabi
,
M. M.
,
Novotny
,
J. E.
, and
Antinnes
,
J. A.
,
1991
, “
In Vivo Flexion/Extension of the Normal Cervical Spine
,”
J. Orthop. Res.
,
9
(
6
), pp.
828
834
.10.1002/jor.1100090608
55.
Lucas
,
S. R.
,
Bass
,
C. R.
,
Salzar
,
R. S.
,
Oyen
,
M. L.
,
Planchak
,
C.
,
Ziemba
,
A.
,
Shender
,
B. S.
, and
Paskoff
,
G.
,
2008
, “
Viscoelastic Properties of the Cervical Spinal Ligaments Under Fast Strain Rate Deformations
,”
Acta Biomater.
,
4
(
1
), pp.
117
125
.10.1016/j.actbio.2007.08.003
56.
Troyer
,
K. L.
, and
Puttlitz
,
C. M.
,
2012
, “
Nonlinear Viscoelasticity Plays an Essential Role in the Functional Behavior of Spinal Ligaments
,”
J. Biomech.
,
45
(
4
), pp.
684
691
.10.1016/j.jbiomech.2011.12.009
57.
Riches
,
P. E.
,
Dhillon
,
N.
,
Lotz
,
J.
,
Woods
,
A. W.
, and
McNally
,
D. S.
,
2002
, “
The Internal Mechanics of the Intervertebral Disc Under Cyclic Loading
,”
J. Biomech.
,
35
(
9
), pp.
1263
1271
.10.1016/S0021-9290(02)00070-2
58.
Périé
,
D.
,
Korda
,
D.
, and
Iatridis
,
J. C.
,
2005
, “
Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability
,”
J. Biomech.
,
28
(
11
), pp.
2164
2171
.10.1016/j.jbiomech.2004.10.002
59.
Stokes
,
I. A. F.
,
Laible
,
J. P.
,
Gardner-Morse
,
M. G.
,
Costi
,
J. J.
, and
Iatridis
,
J. C.
,
2011
, “
Refinement of Elastic, Poroelastic, and Osmotic Tissue Properties of Intervertebral Disks to Analyze Behavior in Compression
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
122
131
.10.1007/s10439-010-0140-1
60.
Goertzen
,
D. J.
,
Lane
,
C.
, and
Oxland
,
T. R.
,
2004
, “
Neutral Zone and Range of Motion in the Spine are Greater With Stepwise Loading Than With a Continuous Loading Protocol. An In Vitro Porcine Investigation
,”
J. Biomech.
,
37
(
2
), pp.
257
261
.10.1016/S0021-9290(03)00307-5
61.
Baillargeon
,
E.
, and
Anderst
,
W. J.
,
2013
, “
Sensitivity, Reliability and Accuracy of the Instant Center of Rotation Calculation in the Cervical Spine During In Vivo Dynamic Flexion-Extension
,”
J. Biomech.
,
46
(
4
), pp.
670
676
.10.1016/j.jbiomech.2012.11.055
You do not currently have access to this content.