Crimp morphology is believed to be related to tendon mechanical behavior. While crimp has been extensively studied at slack or nondescript load conditions in tendon, few studies have examined crimp at specific, quantifiable loading conditions. Additionally, the effect of the number of cycles of preconditioning on collagen fiber crimp behavior has not been examined. Further, the dependence of collagen fiber crimp behavior on location and developmental age has not been examined in the supraspinatus tendon. Local collagen fiber crimp frequency is quantified throughout tensile mechanical testing using a flash freezing method immediately following the designated loading protocol. Samples are analyzed quantitatively using custom software and semi-quantitatively using a previously established method to validate the quantitative software. Local collagen fiber crimp frequency values are compared throughout the mechanical test to determine where collagen fiber frequency changed. Additionally, the effect of the number of preconditioning cycles is examined compared to the preload and toe-region frequencies to determine if increasing the number of preconditioning cycles affects crimp behavior. Changes in crimp frequency with age and location are also examined. Decreases in collagen fiber crimp frequency were found at the toe-region at all ages. Significant differences in collagen fiber crimp frequency were found between the preload and after preconditioning points at 28 days. No changes in collagen fiber crimp frequency were found between locations or between 10 and 28 days old. Local collagen fiber crimp frequency throughout mechanical testing in a postnatal developmental mouse SST model was measured. Results confirmed that the uncrimping of collagen fibers occurs primarily in the toe-region and may contribute to the tendon’s nonlinear behavior. Additionally, results identified changes in collagen fiber crimp frequency with an increasing number of preconditioning cycles at 28 days, which may have implications on the measurement of mechanical properties and identifying a proper reference configuration.

References

1.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
, 2009, “
The Effects of Preconditioning Strain on Measured Tissue Properties
,”
J. Biomech.
,
42
(
9
), pp.
1360
1362
.
2.
Woo
,
S. L.
, 1982, “
Mechanical Properties of Tendons and Ligaments. I. Quasi-Static and Nonlinear Viscoelastic Properties
,”
Biorheology
,
19
(
3
), pp.
385
396
.
3.
Miller
,
K. S.
,
Edelstein
,
L.
,
Connizzo
,
B. K.
, and
Soslowsky
,
L. J.
, 2012, “
Effect of Preconditioning and Stress Relaxation on Local Collagen Fiber Re-Alignment: Inhomogeneous Properties of Rat Supraspinatus Tendon
,”
J. Biomech. Eng.
, in press.
4.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
, 2011, “
Preconditioning is Correlated With Altered Collagen Fiber Alignment in Ligament
,”
J. Biomech. Eng.
,
133
(
6
), p.
064506
.
5.
Houssen
,
Y. G.
,
Gusachenko
,
I.
,
Schanne-Klein
,
M. C.
, and
Allain
,
J. M.
, 2011, “
Monitoring Micrometer-Scale Collagen Organization in Rat-Tail Tendon Upon Mechanical Strain Using Second Harmonic Microscopy
,”
J. Biomech.
,
44
(
11
), pp.
2047
2052
.
6.
Franchi
,
M.
,
Raspanti
,
M.
,
Dell’Orbo
,
C.
,
Quaranta
,
M.
,
De Pasquale
,
V.
,
Ottani
,
V.
, and
Ruggeri
,
A.
, 2008, “
Different Crimp Patterns in Collagen Fibrils Relate to the Subfibrillar Arrangement
,”
Connect. Tissue Res.
,
49
(
2
), pp.
85
91
.
7.
Franchi
,
M.
,
Fini
,
M.
,
Quaranta
,
M.
,
De Pasquale
,
V.
,
Raspanti
,
M.
,
Giavaresi
,
G.
,
Ottani
,
V.
, and
Ruggeri
,
A.
, 2007, “
Crimp Morphology in Relaxed and Stretched Rat Achilles Tendon
,”
J. Anat.
,
210
(
1
), pp.
1
7
.
8.
Franchi
,
M.
,
Ottani
,
V.
,
Stagni
,
R.
, and
Ruggeri
,
A.
, 2010, “
Tendon and Ligament Fibrillar Crimps Give Rise to Left-Handed Helices of Collagen Fibrils in Both Planar and Helical Crimps
,”
J. Anat.
,
216
(
3
), pp.
301
309
.
9.
Franchi
,
M.
,
Quaranta
,
M.
,
Macciocca
,
M.
,
Leonardi
,
L.
,
Ottani
,
V.
,
Bianchini
,
P.
,
Diaspro
,
A.
, and
Ruggeri
,
A.
, 2010, “
Collagen Fibre Arrangement and Functional Crimping Pattern of the Medial Collateral Ligament in the Rat Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
18
(
12
), pp.
1671
1678
.
10.
Hurschler
,
C.
,
Provenzano
,
P. P.
, and
Vanderby
,
R.
, Jr.
, 2003, “
Scanning Electron Microscopic Characterization of Healing and Normal Rat Ligament Microstructure Under Slack and Loaded Conditions
,”
Connect. Tissue Res.
,
44
(
2
), pp.
59
68
.
11.
Miller
,
K. S.
,
Connizzo
,
B. K.
, and
Soslowsky
,
L. J.
, 2011, “
Collagen Fiber Re-Alignment in a Neonatal Developmental Mouse Supraspinatus Tendon Model
,”
Ann. Biomed. Eng.
, in press.
12.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R. G.
, 1972, “
Collagen; Ultrastructure and its Relation to Mechanical Properties as a Function of Ageing
,”
Proc. R. Soc. London, Ser. B
,
180
(
60
), pp.
293
315
.
13.
Gathercole
,
L. J.
, and
Keller
,
A.
, 1991, “
Crimp Morphology in the Fibre-Forming Collagens
,”
Matrix
,
11
(
3
), pp.
214
234
.
14.
Shah
,
J. S.
,
Palacios
,
E.
, and
Palacios
,
L.
, 1982, “
Development of Crimp Morphology and Cellular Changes in Chick Tendons
,”
Dev. Biol.
,
94
(
2
), pp.
499
504
.
15.
Ansorge
,
H. L.
,
Adams
,
S.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
, 2011, “
Mechanical, Compositional, and Structural Properties of the Post-Natal Mouse Achilles Tendon
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1904
1913
.
16.
Boorman
,
R. S.
,
Norman
,
T.
,
Matsen
,
F. A.
, III
, and
Clark
,
J. M.
, 2006, “
Using a Freeze Substitution Fixation Technique and Histological Crimp Analysis for Characterizing Regions of Strain in Ligaments Loaded in Situ
,”
J. Orthop. Res.
,
24
(
4
), pp.
793
799
.
17.
Stouffer
,
D. C.
,
Butler
,
D. L.
, and
Hosny
,
D.
, 1985, “
The Relationship Between Crimp Pattern and Mechanical Response of Human Patellar Tendon-Bone Units
,”
J. Biomech. Eng.
,
107
(
2
), pp.
158
165
.
18.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
, 2009, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.
19.
Thomopoulos
,
S.
,
Williams
,
G. R.
,
Gimbel
,
J. A.
,
Favata
,
M.
, and
Soslowsky
,
L. J.
, 2003, “
Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site
,”
J. Orthop. Res.
,
21
(
3
), pp.
413
419
.
20.
Festing
,
M. F.
, 2006, “
Design and Statistical Methods in Studies Using Animal Models of Development
,”
ILAR J.
,
47
(
1
), pp.
5
14
.
21.
Peltz
,
C. D.
,
Sarver
,
J. J.
,
Dourte
,
L. M.
,
Wurgler-Hauri
,
C. C.
,
Williams
,
G. R.
, and
Soslowsky
,
L. J.
, 2010, “
Exercise Following a Short Immobilization Period is Detrimental to Tendon Properties and Joint Mechanics in a Rat Rotator Cuff Injury Model
,”
J. Orthop. Res.
,
28
(
7
), pp.
841
845
.
22.
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 2002, “
Ligament Creep Recruits Fibres at Low Stresses and can Lead to Modulus-Reducing Fibre Damage at Higher Creep Stresses: A Study in Rabbit Medial Collateral Ligament Model
,”
J. Orthop. Res.
,
20
(
5
), pp.
967
974
.
23.
Landerman
,
L. R.
,
Land
,
K. C.
, and
Pieper
,
C. F.
, 1997, “
An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values
,”
Sociolog. Methods Res.
,
26
(
1
), pp.
3
33
.
24.
Little
,
R. J. A.
, 1988, “
Missing-Data Adjustments in Large Surveys
,”
J. Bus. Econ. Stat.
,
6
(
3
), pp.
287
296
.
25.
Yuan
,
Y.
, 2011, “
Multiple Imputation Using SAS Software
,”
J. Stat. Software
,
45
(
6
), pp.
1
25
.
26.
Birk
,
D. E.
,
Nurminskaya
,
M. V.
, and
Zycband
,
E. I.
, 1995, “
Collagen Fibrillogenesis in Situ: Fibril Segments Undergo Post-Depositional Modifications Resulting in Linear and Lateral Growth During Matrix Development
,”
Dev. Dyn.
,
202
(
3
), pp.
229
243
.
27.
Birk
,
D. E.
,
Zycband
,
E. I.
,
Woodruff
,
S.
,
Winkelmann
,
D. A.
, and
Trelstad
,
R. L.
, 1997, “
Collagen Fibrillogenesis in Situ: Fibril Segments Become Long Fibrils as the Developing Tendon Matures
,”
Dev. Dyn.
,
208
(
3
), pp.
291
298
.
28.
Zhang
,
G.
,
Young
,
B. B.
,
Ezura
,
Y.
,
Favata
,
M.
,
Soslowsky
,
L. J.
,
Chakravarti
,
S.
, and
Birk
,
D. E.
, 2005, “
Development of Tendon Structure and Function: Regulation of Collagen Fibrillogenesis
,”
J. Musculoskeletal and Neuronal Interact.
,
5
(
1
), pp.
5
21
.
29.
Provenzano
,
P. P.
, and
Vanderby
,
R.
, Jr.
, 2006, “
Collagen Fibril Morphology and Organization: Implications for Force Transmission in Ligament and Tendon
,”
Matrix Biol.
,
25
(
2
), pp.
71
84
.
30.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
, 2002, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
J. Biomech. Eng.
,
124
(
1
), pp.
72
77
.
31.
Woo
,
S. L.
,
Debski
,
R. E.
,
Zeminski
,
J.
,
Abramowitch
,
S. D.
,
Saw
,
S. S.
, and
Fenwick
,
J. A.
, 2000, “
Injury and Repair of Ligaments and Tendons
,”
Annu. Rev. Biomed. Eng.
,
2
, pp.
83
118
.
32.
Rigby
,
B. J.
, 1964, “
Effect of Cyclic Extension on the Physical Properties of Tendon Collagen and Its Possible Relation to Biological Ageing of Collagen
,”
Nature
,
202
, pp.
1072
1074
.
33.
Rigby
,
B. J.
,
Hirai
,
N.
,
Spikes
,
J. D.
, and
Eyring
,
H.
, 1959, “
The Mechanical Properties of Rat Tail Tendon
,”
J. Gen. Physiol.
,
43
(
2
), pp.
265
283
.
34.
Screen
,
H. R.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Shelton
,
J. C.
, 2004, “
An Investigation Into the Effects of the Hierarchical Structure of Tendon Fascicles on Micromechanical Properties
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
218
(
2
), pp.
109
119
.
35.
Viidik
,
A.
, 1972, “
Simultaneous Mechanical and Light Microscopic Studies of Collagen Fibers
,”
Z. Anat. Entwicklungsgesch
,
136
(
2
), pp.
204
212
.
36.
Duenwald
,
S. E.
,
Vanderby
,
R.
, Jr.
, and
Lakes
,
R. S.
, 2010, “
Stress Relaxation and Recovery in Tendon and Ligament: Experiment and Modeling
,”
Biorheology
,
47
(
1
), pp.
1
14
.
37.
Lokshin
,
O.
, and
Lanir
,
Y.
, 2009, “
Viscoelasticity and Preconditioning of Rat Skin Under Uniaxial Stretch: Microstructural Constitutive Characterization
,”
J. Biomech. Eng.
,
131
(
3
), p.
031009
.
38.
Sellaro
,
T. L.
,
Hildebrand
,
D.
,
Lu
,
Q.
,
Vyavahare
,
N.
,
Scott
,
M.
, and
Sacks
,
M. S.
, 2007, “
Effects of Collagen Fiber Orientation on the Response of Biologically Derived Soft Tissue Biomaterials to Cyclic Loading
,”
J. Biomed. Mater. Res. Part A
,
80
(
1
), pp.
194
205
.
You do not currently have access to this content.