Shoe-surface interface characteristics have been implicated in the high incidence of ankle injuries suffered by athletes. Yet, the differences in rotational stiffness among shoes may also influence injury risk. It was hypothesized that shoes with different rotational stiffness will generate different patterns of ankle ligament strain. Four football shoe designs were tested and compared in terms of rotational stiffness. Twelve (six pairs) male cadaveric lower extremity limbs were externally rotated 30 deg using two selected football shoe designs, i.e., a flexible shoe and a rigid shoe. Motion capture was performed to track the movement of the talus with a reflective marker array screwed into the bone. A computational ankle model was utilized to input talus motions for the estimation of ankle ligament strains. At 30 deg of rotation, the rigid shoe generated higher ankle joint torque at 46.2 ± 9.3 Nm than the flexible shoe at 35.4 ± 5.7 Nm. While talus rotation was greater in the rigid shoe (15.9 ± 1.6 deg versus 12.1 ± 1.0 deg), the flexible shoe generated more talus eversion (5.6 ± 1.5 deg versus 1.2± 0.8 deg). While these talus motions resulted in the same level of anterior deltoid ligament strain (approxiamtely 5%) between shoes, there was a significant increase of anterior tibiofibular ligament strain (4.5± 0.4% versus 2.3 ± 0.3%) for the flexible versus more rigid shoe design. The flexible shoe may provide less restraint to the subtalar and transverse tarsal joints, resulting in more eversion but less axial rotation of the talus during foot/shoe rotation. The increase of strain in the anterior tibiofibular ligament may have been largely due to the increased level of talus eversion documented for the flexible shoe. There may be a direct correlation of ankle joint torque with axial talus rotation, and an inverse relationship between torque and talus eversion. The study may provide some insight into relationships between shoe design and ankle ligament strain patterns. In future studies, these data may be useful in characterizing shoe design parameters and balancing potential ankle injury risks with player performance.

References

1.
Barker
,
H. B.
,
Beynnon
,
B. D.
, and
Renstrom
,
P. A.
, 1997, “
Ankle Injury Risk Factors in Sports
,”
Sports Med.
,
23
(
2
), pp.
69
74
.
2.
Hootman
,
J. M.
,
Dick
,
R.
, and
Agel
,
J.
, 2007, “
Epidemiology of Collegiate Injuries for 15 Sports: Summary and Recommendations for Injury Prevention Initiatives
,”
J. Athl. Train.
,
42
(
2
), pp.
311
319
.
3.
Wolfe
,
M. W.
,
Uhl
,
T. L.
,
Mattacola
,
C. G.
, and
Mccluskey
,
L. C.
, 2001, “
Management of Ankle Sprains
,”
Am. Fam. Physician
,
63
(
1
), pp.
93
104
.
4.
Fong
,
D. T.
,
Hong
,
Y.
,
Chan
,
L. K.
,
Yung
,
P. S.
, and
Chan
,
K. M.
, 2007, “
A Systematic Review on Ankle Injury and Ankle Sprain in Sports
,”
Sports Med.
,
37
(
1
), pp.
73
94
.
5.
Beynnon
,
B. D.
,
Murphy
,
D. F.
, and
Alosa
,
D. M.
, 2002, “
Predictive Factors for Lateral Ankle Sprains: A Literature Review
,”
J. Athl. Train.
,
37
(
4
), pp.
376
380
.
6.
Fallat
,
L.
,
Grimm
,
D. J.
, and
Saracco
,
J. A.
, 1998, “
Sprained Ankle Syndrome: Prevalence and Analysis of 639 Acute Injuries
,”
J. Foot Ankle Surg.
,
37
(
4
), pp.
280
285
.
7.
Gerber
,
J. P.
,
Williams
,
G. N.
,
Scoville
,
C. R.
,
Arciero
,
R. A.
, and
Taylor
,
D. C.
, 1998, “
Persistent Disability Associated with Ankle Sprains: A Prospective Examination of an Athletic Population
,”
Foot Ankle Int.
,
19
(
10
), pp.
653
660
.
8.
Guise
,
E. R.
, 1976, “
Rotational Ligamentous Injuries to the Ankle in Football
,”
Am. J. Sports Med.
,
4
(
1
), pp.
1
6
.
9.
Hopkinson
,
W. J.
,
St Pierre
,
P.
,
Ryan
,
J. B.
, and
Wheeler
,
J. H.
, 1990, “
Syndesmosis Sprains of the Ankle
,”
Foot Ankle
,
10
(
6
), pp.
325
330
.
10.
Powell
,
J. W.
, and
Schootman
,
M.
, 1992, “
A Multivariate Risk Analysis of Selected Playing Surfaces in the National Football League: 1980 to 1989. An Epidemiologic Study of Knee Injuries
,”
Am. J. Sports Med.
,
20
(
6
), pp.
686
694
.
11.
Waterman
,
B. R.
,
Belmont
,
P. J.
Jr.
,
Cameron
,
K. L.
,
Svoboda
,
S. J.
,
Alitz
,
C. J.
, and
Owens
,
B. D.
, 2011, “
Risk Factors for Syndesmotic and Medial Ankle Sprain: Role of Sex, Sport, and Level of Competition
,”
Am. J. Sports Med.
,
39
(
5
), pp.
992
998
.
12.
Bjorneboe
,
J.
Bahr
,
R.
and
Andersen
,
T. E.
, 2010, “
Risk of Injury on Third-Generation Artificial Turf in Norwegian Professional Football
,”
Br. J. Sports Med.
,
44
(
11
), pp.
794
798
.
13.
Dowling
,
A. V.
,
Corazza
,
S.
,
Chaudhari
,
A. M.
, and
Andriacchi
,
T. P.
, 2010, “
Shoe-Surface Friction Influences Movement Strategies During a Sidestep Cutting Task: Implications for Anterior Cruciate Ligament Injury Risk
,”
Am. J. Sports Med.
,
38
(
3
), pp.
478
485
.
14.
Heidt
,
R. S.
Jr.
,
Dormer
,
S. G.
,
Cawley
,
P. W.
,
Scranton
,
P. E.
Jr.
,
Losse
,
G.
, and
Howard
,
M.
, 1996, “
Differences in Friction and Torsional Resistance in Athletic Shoe-Turf Surface Interfaces
,”
Am. J. Sports Med.
,
24
(
6
), pp.
834
842
.
15.
Villwock
,
M. R.
,
Meyer
,
E. G.
,
Powell
,
J. W.
,
Fouty
,
A. J.
, and
Haut
,
R. C.
, 2009, “
Football Playing Surface and Shoe Design Affect Rotational Traction
,”
Am. J. Sports Med.
,
37
(
3
), pp.
518
525
.
16.
Wannop
,
J. W.
,
Worobets
,
J. T.
, and
Stefanyshyn
,
D. J.
, 2010, “
Footwear Traction and Lower Extremity Joint Loading
,”
Am. J. Sports Med.
,
38
(
6
), pp.
1221
1228
.
17.
Nigg
,
B. M.
, and
Yeadon
,
M. R.
, 1987, “
Biomechanical Aspects of Playing Surfaces
,”
J. Sports Sci.
,
5
(
2
), pp.
117
145
.
18.
Torg
,
J. S.
,
Quedenfeld
,
T. C.
, and
Landau
,
S.
, 1974, “
The Shoe-Surface Interface and its Relationship to Football Knee Injuries
,”
J. Sports Med.
,
2
(
5
), pp.
261
269
.
19.
Livesay
,
G. A.
,
Reda
,
D. R.
, and
Nauman
,
E. A.
, 2006, “
Peak Torque and Rotational Stiffness Developed at the Shoe-Surface Interface: The Effect of Shoe Type and Playing Surface
,”
Am. J. Sports Med.
,
34
(
3
), pp.
415
422
.
20.
Sarsam
,
I. M.
, and
Hughes
,
S. P.
, 1988, “
The Role of the Anterior Tibio-Fibular Ligament in Talar Rotation: An Anatomical Study
,”
Injury
,
19
(
2
), pp.
62
64
.
21.
Hertel
,
J.
,
Denegar
,
C. R.
,
Monroe
,
M. M.
, and
Stokes
,
W. L.
, 1999, “
Talocrural and Subtalar Joint Instability after Lateral Ankle Sprain
,”
Med. Sci. Sports Exerc.
,
31
(
11
), pp.
1501
1508
.
22.
Wei
,
F.
,
Hunley
,
S. C.
,
Powell
,
J. W.
, and
Haut
,
R. C.
, 2011, “
Development and Validation of a Computational Model to Study the Effect of Foot Constraint on Ankle Injury Due to External Rotation
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
756
765
.
23.
Wei
,
F.
,
Villwock
,
M. R.
,
Meyer
,
E. G.
,
Powell
,
J. W.
, and
Haut
,
R. C.
, 2010, “
A Biomechanical Investigation of Ankle Injury under Excessive External Foot Rotation in the Human Cadaver
,”
J. Biomech. Eng.
,
132
(
9
),
091001
.
24.
Wei
,
F.
,
Braman
,
J. E.
,
Weaver
,
B. T.
, and
Haut
,
R. C.
, 2011, “
Determination of Dynamic Ankle Ligament Strains from a Computational Model Driven by Motion Analysis Based Kinematic Data
,”
J. Biomech.
,
44
(
15
), pp.
2636
2641
.
25.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.
26.
Soutas-Little
,
R. W.
,
Beavis
,
G. C.
,
Verstraete
,
M. C.
, and
Markus
,
T. L.
, 1987, “
Analysis of Foot Motion During Running Using a Joint Co-Ordinate System
,”
Med. Sci. Sports Exerc.
,
19
(
3
), pp.
285
293
.
27.
Wei
,
F.
,
Post
,
J. M.
,
Braman
,
J. E.
,
Meyer
,
E. G.
,
Powell
,
J. W.
, and
Haut
,
R. C.
, 2012, “
Eversion during External Rotation of the Human Cadaver Foot Produces High Ankle Sprains
,”
J. Orthop. Res.
, pp. (in press).
28.
Verhagen
,
E. A.
,
Van Mechelen
,
W.
, and
De Vente
,
W.
, 2000, “
The Effect of Preventive Measures on the Incidence of Ankle Sprains
,”
Clin. J. Sport Med.
,
10
(
4
), pp.
291
296
.
29.
Funk
,
J. R.
, 2011, “
Ankle Injury Mechanisms: Lessons Learned from Cadaveric Studies
,”
Clin. Anat.
,
24
(
3
), pp.
350
361
.
30.
Reinschmidt
,
C.
,
Van Den Bogert
,
A. J.
,
Murphy
,
N.
,
Lundberg
,
A.
, and
Nigg
,
B. M.
, 1997, “
Tibiocalcaneal Motion During Running, Measured with External and Bone Markers
,”
Clin. Biomech. (Bristol, Avon)
,
12
(
1
), pp.
8
16
.
31.
Drakos
,
M. C.
,
Hillstrom
,
H.
,
Voos
,
J. E.
,
Miller
,
A. N.
,
Kraszewski
,
A. P.
,
Wickiewicz
,
T. L.
,
Warren
,
R. F.
,
Allen
,
A. A.
, and
O’Brien
,
S. J.
, 2010, “
The Effect of the Shoe-Surface Interface in the Development of Anterior Cruciate Ligament Strain
,”
J. Biomech. Eng.
,
132
(
1
),
011003
.
You do not currently have access to this content.