Developing appropriate mathematical models for biological soft tissues such as ligaments, tendons, and menisci is challenging. Stress-strain behavior of these tissues is known to be continuous and characterized by an exponential toe region followed by a linear elastic region. The conventional curve-fitting technique applies a linear curve to the elastic region followed by a separate exponential curve to the toe region. However, this technique does not enforce continuity at the transition between the two regions leading to inaccuracies in the material model. In this work, a Continuous Method is developed to fit both the exponential and linear regions simultaneously, which ensures continuity between regions. Using both methods, three cases were evaluated: idealized data generated mathematically, noisy idealized data produced by adding random noise to the idealized data, and measured data obtained experimentally. In all three cases, the Continuous Method performed superiorly to the conventional technique, producing smaller errors between the model and data and also eliminating discontinuities at the transition between regions. Improved material models may lead to better predictions of nonlinear biological tissues’ behavior resulting in improved the accuracy for a large array of models and computational analyses used to predict clinical outcomes.

References

1.
Danto
,
M. I.
and
Woo
,
S. L.
, 1993,
“The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates,”
J. Orthop. Res.
,
11
(
1
), pp.
58
67.
2.
De Vita
,
R.
and
Slaughter
,
W. S.
, 2007,
“A Constitutive Law for the Failure Behavior of Medial Collateral Ligaments,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
189
197
.
3.
Donahue
,
T. L.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2001,
“Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made from Bovine Digital Extensor and Human Hamstring Tendons,”
J. Biomech. Eng.
,
123
(
2
), pp.
162
169
.
4.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L.
, 1994,
“Tensile and Viscoelastic Properties of Human Patellar Tendon,”
J. Orthop. Res.
,
12
(
6
), pp.
796
803
.
5.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.
, 1993,
“On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament,”
J. Biomech.
,
26
(
4/5
), pp.
447
452
.
6.
Musahl
,
V.
,
Abramowitch
,
S. D.
,
Gabriel
,
M. T.
,
Debski
,
R. E.
,
Hertel
,
P.
,
Fu
,
F. H.
, and
Woo
,
S. L.
, 2003,
“Tensile Properties of an Anterior Cruciate Ligament Graft After Bone-Patellar Tendon-Bone Press-Fit Fixation,”
Knee Surg. Sports Traumatol. Arthrosc.
,
11
(
2
), pp.
68
74
.
7.
Abramowitch
,
S. D.
, and
Woo
,
S. L.
, 2004,
“An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory,”
J. Biomech. Eng.
,
126
(
1
), pp.
92
97
.
8.
Drury
,
N. J.
, 2008, “
Evaluating the Anterior Stability Provided by the Glenohumeral Capsule: a Finite Element Approach
,”
Department of Bioengineering
,
University of Pittsburgh
,
Pittsburgh, PA
.
9.
Ellis
,
B. J.
,
Debski
,
R. E.
,
Moore
,
S. M.
,
McMahon
,
P. J.
, and
Weiss
,
J. A.
, 2007,
“Methodology and Sensitivity Studies for Finite Element Modeling of the Inferior Glenohumeral Ligament Complex,”
J. Biomech.
,
40
(
3
), pp.
603
612
.
10.
Ellis
,
B. J.
,
Drury
,
N. J.
,
Moore
,
S. M.
,
McMahon
,
P. J.
,
Weiss
,
J. A.
, and
Debski
,
R. E.
, 2010,
“Finite Element Modelling of the Glenohumeral Capsule Can Help Assess the Tested Region During a Clinical Exam,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
413
418
.
11.
Moore
,
S. M.
,
Ellis
,
B.
,
Weiss
,
J. A.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
, 2010,
“The Glenohumeral Capsule Should be Evaluated as a Sheet of Fibrous Tissue: A Validated Finite Element Model,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
66
76
.
12.
Lin
,
T. W.
,
Cardenas
,
L.
, and
Soslowsky
,
L. J.
, 2004,
“Biomechanics of Tendon Injury and Repair,”
J. Biomech.
,
37
(
6
), pp.
865
877
.
13.
Armstrong
,
A. D.
,
Dunning
,
C. E.
,
Ferreira
,
L. M.
,
Faber
,
K. J.
,
Johnson
,
J. A.
, and
King
,
G. J.
, 2005,
“A Biomechanical Comparison of Four Reconstruction Techniques for the Medial Collateral Ligament-Deficient Elbow,”
J. Shoulder Elbow Surg.
,
14
(
2
), pp.
207
215
.
14.
Stabile
,
K. J.
,
Odom
,
D.
,
Smith
,
T. L.
,
Northam
,
C.
,
Whitlock
,
P. W.
,
Smith
,
B. P.
,
Van Dyke
,
M. E.
, and
Ferguson
,
C. M.
, 2010,
“An Acellular, Allograft-Derived Meniscus Scaffold in an Ovine Model,”
Arthroscopy
,
26
(
7
), pp.
936
948
.
15.
Fung
,
Y. C.
, 1967,
“Elasticity of Soft Tissues in Simple Elongation,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.
16.
Fung
,
Y.-C.
, 1981,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
17.
Mow
,
V. C.
and
Huiskes
,
R.
, 2005,
Basic Orthopaedic Biomechanics and Mechano-Biology
,
Lippincott Williams and Wilkens
,
Philadelphia
.
18.
Roth
,
V.
and
Mow
,
V. C.
, 1980,
“The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age,”
J. Bone Joint Surg. Am.
,
62
(
7
), pp.
1102
1117
.
19.
Haut
,
R. C.
and
Little
,
R. W.
, 1972,
“A Constitutive Equation for Collagen Fibers,”
J. Biomech.
,
5
(
5
), pp.
423
430
.
20.
Woo
,
S. L.
, 1982,
“Mechanical Properties of Tendons and Ligaments. I. Quasi-Static and Nonlinear Viscoelastic Properties,”
Biorheology
,
19
(
3
), pp.
385
396
.
21.
Morgan
,
F. R.
, 1960,
“The Mechanical Properties of Collagen Fibers: Stress-Strain Curves,”
J. Soc. Leather Trades’ Chem.
,
44
, pp.
171
182
.
22.
Pini
,
M.
,
Zysset
,
P.
,
Botsis
,
J.
, and
Contro
,
R.
, 2004,
“Tensile and Compressive Behaviour of the Bovine Periodontal Ligament,”
J. Biomech.
,
37
(
1
), pp.
111
119
.
23.
Min
,
Y. B.
,
Titze
,
I. R.
, and
Alipour-Haghighi
,
F.
, 1995,
“Stress-Strain Response of the Human Vocal Ligament,”
Ann. Otol. Rhinol. Laryngol.
,
104
(
7
), pp.
563
569
.
24.
Voycheck
,
C. A.
,
Brown
,
A. J.
,
McMahon
,
P. J.
, and
Debski
,
R. E.
, 2008, “Effects of Simulated Injury on Tissue Deformation and Mechanical Properties of the Anterioinferior Gleno Humeral Capsule,” ASME Summer Bioengineering Conference, Marco Island, FL.
25.
Rainis
,
E. J.
, 2007, “
Characterizing the Mechanical Properties of the Glenohumeral Capsule: Implications for Finite Element Modeling
,” M.S.,
University of Pittsburgh
,
Pittsburgh
.
26.
Ridge
,
M. D.
and
Wright
,
V.
, 1964,
“The Description of Skin Stiffness,”
Biorheology
,
2
, pp.
67
74
.
27.
Woo
,
S. L.
,
Simon
,
B. R.
,
Kuei
,
S. E.
, and
Akeson
,
W. H.
, 1980,
“Quasilinear Viscoelastic Properties of Normal Articular Cartilage,”
J. Biomech. Eng.
,
102
, pp.
85
90
.
28.
Fithian
,
D. C.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
, 1990,
“Material Properties and Structure-Function Relationships in the Menisci,”
Clin. Orthop. Relat. Res.
,
252
, pp.
19
31
.
29.
Fithian
,
D. C.
,
Zhu
,
W. B.
,
Ratcliffe
,
A.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
, 1989,
“Exponential Law Representation of Tensile Properties of Human Meniscus,”
Proc. Inst. Mech. Eng.
,
C384/058
, pp.
85
90
.
30.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
, 1989,
“Material Properties of the Normal Medial Bovine Meniscus,”
J. Orthop. Res.
,
7
(
6
), pp.
771
782
.
31.
Frank
,
C. B.
, 2004,
“Ligament Structure, Physiology and Function,”
J Musculoskeletal and Neuronal Interact.
,
4
(
2
), pp.
199
201
.
32.
Ott
,
R. L.
and
Longnecker
,
M.
, 2001,
An Introduction to Statistical Methods and Data Analysis
,
Duxbury
,
Pacific Grove, CA
.
33.
See Supplemental material http://dx.doi.org/10.1115/1.4004412http://dx.doi.org/10.1115/1.4004412 E-JBENDY-133-015106 for free MATLAB code download. This document can be reached through a direct link in the online article’s HTML reference section or via the homepage http://www.aip.org/pubservs/epaps.html.
You do not currently have access to this content.