Mechanical loading protocols in tissue engineering (TE) aim to improve the deposition of a properly organized collagen fiber network. In addition to collagen remodeling, these conditioning protocols can result in tissue compaction. Tissue compaction is beneficial to tissue collagen alignment, yet it may lead to a loss of functionality of the TE construct due to changes in geometry after culture. Here, a mathematical model is presented to relate the changes in collagen architecture to the local compaction within a TE small blood vessel, assuming that under static conditions, compaction is the main factor responsible for collagen fiber organization. An existing structurally based model is extended to incorporate volumetric tissue compaction. Subsequently, the model is applied to describe the collagen architecture of TE constructs under either strain based or stress based stimulus functions. Our computations indicate that stress based simulations result in a helical collagen fiber distribution along the vessel wall. The helix pitch angle increases from a circumferential direction in the inner wall, over about 45 deg in the middle vessel layer, to a longitudinal direction in the outer wall. These results are consistent with experimental data from TE small diameter blood vessels. In addition, our results suggest a stress dependent remodeling of the collagen, suggesting that cell traction is responsible for collagen orientation. These findings may be of value to design improved mechanical conditioning protocols to optimize the collagen architecture in engineered tissues.

References

1.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
,
260
(
5110
), pp.
920
926
.
2.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
, 2000, “
Functional Tissue Engineering: The Role of Biomechanics
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
570
575
.
3.
Niklason
,
L. E.
,
Gao
,
J.
,
Abbott
,
W. M.
,
Hirschi
,
K. K.
,
Houser
,
S.
,
Marini
,
R.
, and
Langer
,
R.
, 1999, “
Functional Arteries Grown in vitro
,”
Science
,
284
(
5413
), pp.
489
493
.
4.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1–3
), pp.
1
48
.
5.
Lanir
,
Y.
, 1983, “
Constitutive-Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.
6.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation into a Structural Constitutive Model for Planar-Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
280
287
.
7.
Driessen
,
N. J. B.
,
Cox
,
M. A. J.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2008, “
Remodelling of the Angular Collagen Fiber Distribution in Cardiovascular Tissues
,”
Biomech. Model. Mechanobiol.
,
7
(
2
), pp.
93
103
.
8.
Dahl
,
S. L. M.
,
Vaughn
,
M. E.
, and
Niklason
,
L. E.
, 2007, “
An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries
,”
Ann. Biomed. Eng.
,
35
(
10
), pp.
1749
1755
.
9.
Mol
,
A.
,
Driessen
,
N. J. B.
,
Rutten
,
M. C. M.
,
Hoerstrup
,
S. P.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2005, “
Tissue Engineering of Human Heart Valve Leaflets: A Novel Bioreactor for a Strain-Based Conditioning Approach
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1778
1788
.
10.
Stekelenburg
,
M.
,
Rutten
,
M. C. M.
,
Snoeckx
,
L. H. E. H.
, and
Baaijens
,
F. P. T.
, 2009, “
Dynamic Straining Combined With Fibrin Gel Cell Seeding Improves Strength of Tissue-Engineered Small-Diameter Vascular Grafts
,”
Tissue Eng. Part A
,
15
(
5
), pp.
1081
1089
.
11.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
Mcculloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.
12.
Taber
,
L. A.
, and
Eggers
,
D. W.
, 1996, “
Theoretical Sudy of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
,
180
(
4
), pp.
343
357
.
13.
Taber
,
L. A.
, 1998, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
348
354
.
14.
Ambrosi
,
D.
, and
Guana
,
F.
, 2007, “
Stress-Modulated Growth
,”
Math. Mech. Solids
,
12
(
3
), pp.
319
342
.
15.
Ambrosi
,
D.
, and
Guillou
,
A.
, 2007, “
Growth and Dissipation in Biological Tissues
,”
Continuum Mech. Thermodyn.
,
19
(
5
), pp.
245
251
.
16.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
, 2008, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
245
262
.
17.
Rubbens
,
M. P.
,
Mol
,
A.
,
van Marion
,
M. H.
,
Hanemaaijer
,
R.
,
Bank
,
R. A.
,
Baaijens
,
F. P. T.
, and
Bouten
,
C. V. C.
, 2009, “
Straining Mode-Dependent Collagen Remodeling in Engineered Cardiovascular Tissue
,”
Tissue Eng. Part A
,
15
(
4
), pp.
841
849
.
18.
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2005, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
494
503
.
19.
van Oijen
,
C. H. G. A.
, 2003, “
Mechanics and Design of Fiber-Reinforced Vascular Protheses
,” Ph.D. thesis, Technische Universiteit Eindhoven.
20.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.
21.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
, 1979, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression
,”
Am. J. Physiol.
,
237
(
5
), pp.
H620
H631
.
22.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1983, “
3-Dimensional Stress-Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.
23.
Canham
,
P. B.
,
Talman
,
E. A.
,
Finlay
,
H. M.
, and
Dixon
,
J. G.
, 1991, “
Medial Collagen Organization in Human Arteries of the Heart and Brain by Polarized-Light Microscopy
,”
Connect. Tissue Res.
,
26
(
1–2
), pp.
121
134
.
24.
Canham
,
P. B.
,
Finlay
,
H. M.
, and
Boughner
,
D. R.
, 1997, “
Contrasting Structure of the Saphenous Vein and Internal Mammary Artery Used as Coronary Bypass Vessels
,”
Cardiovasc. Res.
,
34
(
3
), pp.
557
567
.
25.
Wicker
,
B. K.
,
Hutchens
,
H. P.
,
Wu
,
Q.
,
Yeh
,
A. T.
, and
Humphrey
,
J. D.
, 2008, “
Normal Basilar Artery Structure and Biaxial Mechanical Behaviour
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
539
551
.
26.
Bishop
,
J. E.
, and
Lindahl
,
G.
, 1999, “
Regulation of Cardiovascular Collagen Synthesis by Mechanical Load
,”
Cardiovasc. Res.
,
42
(
1
), pp.
27
44
.
27.
MacKenna
,
D.
,
Summerour
,
S. R.
, and
Villarreal
,
F. J.
, 2000, “
Role of Mechanical Factors in Modulating Cardiac Fibroblast Function and Extracellular Matrix Synthesis
,”
Cardiovasc. Res.
,
46
(
2
), pp.
257
263
.
28.
Stopak
,
D.
, and
Harris
,
A. K.
, 1982, “
Connective-Tissue Morphogenesis by Fibroblast Traction. 1. Tissue-Culture Observations
,”
Dev. Biol.
,
90
(
2
), pp.
383
398
.
29.
Sawhney
,
R. K.
, and
Howard
,
J.
, 2002, “
Slow Local Movements of Collagen Fibers by Fibroblasts Drive the Rapid Global Self-Organization of Collagen Gels
,”
J. Cell Biol.
,
157
(
6
), pp.
1083
1091
.
30.
hlmann Noor
,
A. H.
,
Martin-Martin
,
B.
,
Eastwood
,
M.
,
Khaw
,
P. T.
, and
Bailly
,
M.
, 2007, “
Dynamic Protrusive Cell Behaviour Generates Force and Drives Early Matrix Contraction by Fibroblasts
,”
Exp. Cell Res.
,
313
(
20
), pp.
4158
4169
.
31.
Lam
,
M. T.
,
Clem
,
W. C.
, and
Takayama
,
S.
, 2008, “
Reversible On-Demand Cell Alignment Using Reconfigurable Microtopography
,”
Biomaterials
,
29
(
11
), pp.
1705
1712
.
32.
Houtchens
,
G. R.
,
Foster
,
M. D.
,
Desai
,
T. A.
,
Morgan
,
E. F.
, and
Wong
,
J. Y.
, 2008, “
Combined Effects of Microtopography and Cyclic Strain on Vascular Smooth Muscle Cell Orientation
,”
J. Biomech.
,
41
(
4
), pp.
762
769
.
33.
Lin
,
I. E.
, and
Taber
,
L. A.
, 1995, “
A Model for Stress-Induced Growth in the Developing Hheart
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
343
349
.
34.
Cowin
,
S. C.
, 1996, “
Strain or Deformation Rate Dependent Finite Growth in Soft Tissues
,”
J. Biomech.
,
29
(
5
), pp.
647
649
.
35.
Carver
,
W.
,
Nagpal
,
M. L.
,
Nachtigal
,
M.
,
Borg
,
T. K.
, and
Terracio
,
L.
, 1991, “
Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts
,”
Circ. Res.
,
69
(
1
), pp.
116
122
.
36.
Balguid
,
A.
,
Driessen
,
N. J.
,
Mol
,
A.
,
Schmitz
,
J. P. J.
,
Verheyen
,
F.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2008, “
Stress Related Collagen Ultrastructure in Human Aortic Valves—Implications for Tissue Engineering
,”
J. Biomech.
,
41
(
12
), pp.
2612
2617
.
37.
Stekelenburg
,
M.
, 2006, “
Strain-Based Optimization of Hhuman Tissue Engineered Small Diameter Blood Vessels
,” Ph.D. thesis, Technische Universiteit Eindhoven.
You do not currently have access to this content.