Accurate knowledge of in vivo anterior cruciate ligament (ACL) forces is instrumental for understanding normal ACL function and improving surgical ACL reconstruction techniques. The objective of this study was to estimate the change in ACL forces under in vivo loading conditions using a noninvasive technique. A combination of magnetic resonance and dual fluoroscopic imaging system was used to determine ACL in vivo elongation during controlled weightbearing at discrete flexion angles, and a robotic testing system was utilized to determine the ACL force-elongation data in vitro. The in vivo ACL elongation data were mapped to the in vitro ACL force-elongation curve to estimate the change in in vivo ACL forces in response to full body weightbearing using a weighted mean statistical method. The data demonstrated that by assuming that there was no tension in the ACL under zero weightbearing, the changes in in vivo ACL force caused by full body weightbearing were 131.4±16.8N at 15 deg, 106.7±11.2N at 30 deg, and 34.6±4.5N at 45 deg of flexion. However, when the assumed tension in the ACL under zero weightbearing was over 20 N, the change in the estimated ACL force in response to the full body weightbearing approached an asymptotic value. With an assumed ACL tension of 40 N under zero weightbearing, the full body weight caused an ACL force increase in 202.7±27.6N at 15 deg, 184.9±22.5N at 30 deg, and 98.6±11.7N at 45 deg of flexion. The in vivo ACL forces were dependent on the flexion angle with higher force changes at low flexion angles. Under full body weightbearing, the ACL may experience less than 250 N. These data may provide a valuable insight into the biomechanical behavior of the ACL under in vivo loading conditions.

1.
Butler
,
D. L.
,
Guan
,
Y.
,
Kay
,
M. D.
,
Cummings
,
J. F.
,
Feder
,
S. M.
, and
Levy
,
M. S.
, 1992, “
Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
25
(
5
), pp.
511
518
.
2.
Chandrashekar
,
N.
,
Mansouri
,
H.
,
Slauterbeck
,
J.
, and
Hashemi
,
J.
, 2006, “
Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
39
(
16
), pp.
2943
2950
.
3.
Henning
,
C. E.
,
Lynch
,
M. A.
, and
Glick
,
K. R.
, Jr.
, 1985, “
An In-Vivo Strain Gage Study of Elongation of the Anterior Cruciate Ligament
,”
Am. J. Sports Med.
0363-5465,
13
(
1
), pp.
22
26
.
4.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Tohyama
,
H.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Renstöm
,
P.
, and
Pope
,
M. H.
, 1994, “
Determination of a Zero Strain Reference for the Anteromedial Band of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
12
, pp.
789
795
.
5.
Woo
,
S. L.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
, 1991, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex. The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
0363-5465,
19
(
3
), pp.
217
225
.
6.
Ahmed
,
A. M.
,
Burke
,
D. L.
,
Duncan
,
N. A.
, and
Chan
,
K. H.
, 1992, “
Ligament Tension Pattern in the Flexed Knee in Combined Passive Anterior Translation and Axial Rotation
,”
J. Orthop. Res.
0736-0266,
10
, pp.
854
867
.
7.
Jasty
,
M.
,
Lew
,
W. D.
, and
Lewis
,
J. L.
, 1982, “
In-Vitro Ligament Forces in the Normal Knee Using Buckle Transducers
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
7
, pp.
241
.
8.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
, 1982, “
A Note on the Application and Evaluation of the Buckle Transducer for Knee Ligament Force Measurement
,”
ASME J. Biomech. Eng.
0148-0731,
104
, pp.
125
128
.
9.
Claes
,
L. E.
,
Dürselen
,
L.
, and
Kiefer
,
H.
, 1986, “
Influence of Load, Flexion and Muscle-Forces on the Stress and Strain of Knee Ligaments
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
11
, pp.
238
.
10.
Li
,
G.
,
Zayontz
,
S.
,
Most
,
E.
,
Defrate
,
L. E.
,
Suggs
,
J. F.
, and
Rubash
,
H. E.
, 2004, “
In Situ Forces of the Anterior and Posterior Cruciate Ligaments in High Knee Flexion: An In Vitro Investigation
,”
J. Orthop. Res.
0736-0266,
22
(
2
), pp.
293
297
.
11.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.
, and
Fu
,
F. H.
, 1996, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
0021-9290,
29
(
10
), pp.
1357
1360
.
12.
Woo
,
S. L.
,
Wu
,
C.
,
Dede
,
O.
,
Vercillo
,
F.
, and
Noorani
,
S.
, 2006, “
Biomechanics and Anterior Cruciate Ligament Reconstruction
,”
J Orthop. Surg. and Res.
,
1
, pp.
2
.
13.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L.
, 1999, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL
,”
J. Biomech.
0021-9290,
32
(
4
), pp.
395
400
.
14.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Nichols
,
C. E.
,
Johnson
,
R. J.
, and
Pope
,
M. H.
, 1993, “
An In Vivo Comparison of Anterior Tibial Translation and Strain in the Anteromedial Band of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
26
, pp.
51
58
.
15.
Sakane
,
M.
,
Fox
,
R. J.
,
Woo
,
S. L.
,
Livesay
,
G. A.
,
Li
,
G.
, and
Fu
,
F. H.
, 1997, “
In Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads
,”
J. Orthop. Res.
0736-0266,
15
(
2
), pp.
285
293
.
16.
Wu
,
J. L.
,
Seon
,
J. K.
,
Gadikota
,
H. R.
,
Hosseini
,
A.
,
Sutton
,
K. M.
,
Gill
,
T. J.
, and
Li
,
G.
, 2010, “
In Situ Forces in the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament under Simulated Functional Loading Conditions
,”
Am. J. Sports Med.
0363-5465,
30
, pp.
713
720
.
17.
Fleming
,
B. C.
,
Renstrom
,
P. A.
,
Beynnon
,
B. D.
,
Engstrom
,
B.
,
Peura
,
G. D.
,
Badger
,
G. J.
, and
Johnson
,
R. J.
, 2001, “
The Effect of Weightbearing and External Loading on Anterior Cruciate Ligament Strain
,”
J. Biomech.
0021-9290,
34
(
2
), pp.
163
170
.
18.
Fukubayashi
,
T.
,
Torzilli
,
P. A.
,
Sherman
,
M. F.
, and
Warren
,
R. F.
, 1982, “
An In-Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64A
(
2
), pp.
258
264
.
19.
Kanamori
,
A.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
,
Fu
,
F. H.
, and
Woo
,
S. L.
, 2002, “
The Effect of Axial Tibial Torque on the Function of the Anterior Cruciate Ligament: A Biomechanical Study of a Simulated Pivot Shift Test
,”
Arthroscopy
,
18
(
4
), pp.
394
398
.
20.
Nagura
,
T.
,
Dyrby
,
C.
,
Alexander
,
E.
, and
Andriacchi
,
T.
, 2002, “
Mechanical Loads at the Knee Joint During Deep Flexion
,”
J. Orthop. Res.
0736-0266,
20
, pp.
881
886
.
21.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
, 2005, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exercise
0195-9131,
37
(
11
), pp.
1948
1956
.
22.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
, 2004, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
0021-9290,
37
(
6
), pp.
797
805
.
23.
Beynnon
,
B. D.
,
Fleming
,
B. C.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Renström
,
P. A.
, and
Pope
,
M. H.
, 1995, “
Anterior Cruciate Ligament Strain Behavior During Rehabilitation Exercises In Vivo
,”
Am. J. Sports Med.
0363-5465,
23
(
1
), pp.
24
34
.
24.
Beynnon
,
B. D.
,
Johnson
,
R. J.
,
Fleming
,
B. C.
,
Renström
,
P. A.
,
Nichols
,
C. E.
,
Pope
,
M. H.
, and
Haugh
,
L. D.
, 1994, “
The Measurement of Elongation of Anterior Cruciate-Ligament Grafts In-Vivo
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
76
(
4
), pp.
520
531
.
25.
Li
,
G.
,
Defrate
,
L. E.
,
Rubash
,
H. E.
, and
Gill
,
T. J.
, 2005, “
In Vivo Kinematics of the ACL During Weight-Bearing Knee Flexion
,”
J. Orthop. Res.
0736-0266,
23
(
2
), pp.
340
344
.
26.
Jordan
,
S. S.
,
Defrate
,
L. E.
,
Nha
,
K. W.
,
Papannagari
,
R.
,
Gill
,
T. J.
, and
Li
,
G.
, 2007, “
The In Vivo Kinematics of the Anteromedial and Posterolateral Bundles of the Anterior Cruciate Ligament During Weightbearing Knee Flexion
,”
Am. J. Sports Med.
0363-5465,
35
(
4
), pp.
547
554
.
27.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
, 2002, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
0090-6964,
30
(
5
), pp.
713
720
.
28.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L.
, 2004, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
383
390
.
29.
Roberts
,
C. S.
,
Cumming
,
J. F.
,
Grood
,
E. S.
, and
Noyes
,
F. R.
, 1994, “
In Vivo Measurement of Human Anterior Cruciate Ligament Forces During Knee Extension Exercises
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
19
, pp.
84
.
30.
Hosseini
,
A.
,
Gill
,
T. J.
, and
Li
,
G.
, 2009, “
In Vivo Anterior Cruciate Ligament Elongation in Response to Axial Tibial Loads
,”
J. Orthop. Sci.
0949-2658,
14
(
3
), pp.
298
306
.
31.
Wu
,
J. L.
,
Hosseini
,
A.
,
Kozanek
,
M.
,
Gadikota
,
H. R.
,
Gill
,
T. J. T.
, and
Li
,
G.
, 2010, “
Kinematics of the Anterior Cruciate Ligament During Gait
,”
Am. J. Sports Med.
0363-5465,
38
(
7
), pp.
1475
1482
.
32.
Li
,
G.
,
Wuerz
,
T. H.
, and
DeFrate
,
L. E.
, 2004, “
Feasibility of Using Orthogonal Fluoroscopic Images to Measure In Vivo Joint Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
313
318
.
33.
Gronenschild
,
E.
, 1997, “
The Accuracy and Reproducibility of a Global Method to Correct for Geometric Image Distortion in the X-Ray Imaging Chain
,”
Med. Phys.
0094-2405,
24
(
12
), pp.
1875
1888
.
34.
Gronenschild
,
E.
, 1999, “
Correction for Geometric Image Distortion in the X-Ray Imaging Chain: Local Technique Versus Global Technique
,”
Med. Phys.
0094-2405,
26
(
12
), pp.
2602
2616
.
35.
Bingham
,
J.
, and
Li
,
G.
, 2006, “
An Optimized Image Matching Method for Determining In-Vivo TKA Kinematics With a Dual-Orthogonal Fluoroscopic Imaging System
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
588
595
.
36.
Li
,
G.
,
Van De Velde
,
S. K.
, and
Bingham
,
J. T.
, 2008, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
0021-9290,
41
(
7
), pp.
1616
1622
.
37.
Leo
,
W. R.
, 1992,
Techniques for Nuclear and Particle Physics Experiments
,
Springer-Verlag
,
London
.
38.
Most
,
E.
,
Li
,
G.
,
Schule
,
S.
,
Sultan
,
P.
,
Park
,
S. E.
,
Zayontz
,
S.
, and
Rubash
,
H. E.
, 2003, “
The Kinematics of Fixed- and Mobile-Bearing Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
416
, pp.
197
207
.
39.
Fleming
,
B. C.
,
Beynnon
,
B. D.
,
Renstrom
,
P. A.
,
Johnson
,
R. J.
,
Nichols
,
C. E.
,
Peura
,
G. D.
, and
Uh
,
B. S.
, 1999, “
The Strain Behavior of the Anterior Cruciate Ligament During Stair Climbing: An In Vivo Study
,”
Arthroscopy
,
15
(
2
), pp.
185
191
.
40.
Li
,
G.
,
Papannagari
,
R.
,
Defrate
,
L. E.
,
Yoo
,
J. D.
,
Park
,
S. E.
, and
Gill
,
T. J.
, 2006, “
Comparison of the ACL and ACL Graft Forces Before and After ACL Reconstruction: An In-Vitro Robotic Investigation
,”
Acta Orthop.
,
77
(
2
), pp.
267
274
.
41.
Harrington
,
I. J.
, 1976, “
A Bioengineering Analysis of Force Actions at the Knee in Normal and Pathological Gait
,”
Biomed. Eng.
0006-2898,
11
(
5
), pp.
167
172
.
42.
Gabriel
,
M. T.
,
Wong
,
E. K.
,
Woo
,
S. L.
,
Yagi
,
M.
, and
Debski
,
R. E.
, 2004, “
Distribution of In Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads
,”
J. Orthop. Res.
0736-0266,
22
(
1
), pp.
85
89
.
43.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
, 1995, “
The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
1
), pp.
1
7
.
44.
Most
,
E.
, 2000, “
Development of a 6-DOF Robotic Test System for Studying the Biomechanics of Total Knee Replacement
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
You do not currently have access to this content.