Mechanically induced cell deformations have been shown to influence chondrocyte response in 3D culture. However, the relationship between the mechanical stimulation and cell response is not yet fully understood. In this study a finite element model was developed to investigate cell-matrix interactions under unconfined compression conditions, using a tissue engineered encapsulating hydrogel seeded with chondrocytes. Model predictions of stress and strain distributions within the cell and on the cell boundary were shown to exhibit space-dependent responses that varied with scaffold mechanical properties, the presence of a pericellular matrix (PCM), and the cell size. The simulations predicted that when the cells were initially encapsulated into the hydrogel scaffolds, the cell size hardly affected the magnitude of the stresses and strains that were reaching the encapsulated cells. However, with the inclusion of a PCM layer, larger cells experienced enhanced stresses and strains resulting from the mechanical stimulation. It was also noted that the PCM had a stress shielding effect on the cells in that the peak stresses experienced within the cells during loading were significantly reduced. On the other hand, the PCM caused the stresses at the cell-matrix interface to increase. Based on the model predictions, the PCM modified the spatial stress distribution within and around the encapsulated cells by redirecting the maximum stresses from the periphery of the cells to the cell nucleus. In a tissue engineered cartilage exposed to mechanical loading, the formation of a neo-PCM by encapsulated chondrocytes appears to protect them from initially excessive mechanical loading. Predictive models can thus shed important insight into how chondrocytes remodel their local environment in order to redistribute mechanical signals in tissue engineered constructs.

1.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
, 1993, “
Mechanotransduction Across the Cell Surface and Through the Cytoskeleton
,”
Science
0036-8075,
260
(
5111
), pp.
1124
1127
.
2.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
, 1995, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell Sci.
,
108
(
4
), pp.
1497
1508
.
3.
Lee
,
D. A.
, and
Bader
,
D. L.
, 1997, “
Compressive Strains at Physiological Frequencies Influence the Metabolism of Chondrocytes Seeded in Agarose
,”
J. Orthop. Res.
0736-0266,
15
(
2
), pp.
181
188
.
4.
Freed
,
L. E.
,
Vunjak-Novakovic
,
G.
, and
Langer
,
R.
, 1993, “
Cultivation of Cell-Polymer Cartilage Implants in Bioreactors
,”
J. Cell. Biochem.
0730-2312,
51
(
3
), pp.
257
264
.
5.
Mauck
,
R. L.
,
Seyhan
,
S. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2002, “
Influence of Seeding Density and Dynamic Deformational Loading on the Developing Structure/Function Relationships of Chondrocyte-Seeded Agarose Hydrogels
,”
Ann. Biomed. Eng.
0090-6964,
30
(
8
), pp.
1046
1056
.
6.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C. B.
,
Wong
,
D. D.
,
Chao
,
P. -H. G.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2000, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
3
), pp.
252
260
.
7.
Waldman
,
S. D.
,
Spiteri
,
C. G.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
, and
Kandel
,
R. A.
, 2004, “
Long-Term Intermittent Compressive Stimulation Improves the Composition and Mechanical Properties of Tissue-Engineered Cartilage
,”
Tissue Eng.
1076-3279,
10
(
9–10
), pp.
1323
1331
.
8.
Lee
,
H. S.
,
Millward-Sadler
,
S. J.
,
Wright
,
M. O.
,
Nuki
,
G.
, and
Salter
,
D. M.
, 2000, “
Integrin and Mechanosensitive Ion Channel-Dependent Tyrosine Phosphorylation of Focal Adhesion Proteins and Beta-Catenin in Human Articular Chondrocytes After Mechanical Stimulation
,”
J. Bone Miner. Res.
0884-0431,
15
(
8
), pp.
1501
1509
.
9.
Wright
,
M. O.
,
Nishida
,
K.
,
Bavington
,
C.
,
Godolphin
,
J. L.
,
Dunne
,
E.
,
Walmsley
,
S.
,
Jobanputra
,
P.
,
Nuki
,
G.
, and
Salter
,
D. M.
, 1997, “
Hyperpolarisation of Cultured Human Chondrocytes Following Cyclical Pressure-Induced Strain: Evidence of a Role for Alpha 5 Beta 1 Integrin as a Chondrocyte Mechanoreceptor
,”
J. Orthop. Res.
0736-0266,
15
(
5
), pp.
742
747
.
10.
Campbell
,
J. J.
,
Blain
,
E. J.
,
Chowdhury
,
T. T.
, and
Knight
,
M. M.
, 2007, “
Loading Alters Actin Dynamics and Up-Regulates Cofilin Gene Expression in Chondrocytes
,”
Biochem. Biophys. Res. Commun.
0006-291X,
361
(
2
), pp.
329
334
.
11.
Kock
,
L. M.
,
Schulz
,
R. M.
,
van Donkelaar
,
C. C.
,
Thummler
,
C. B.
,
Bader
,
A.
, and
Ito
,
K.
, 2009, “
RGD-Dependent Integrins Are Mechanotransducers in Dynamically Compressed Tissue-Engineered Cartilage Constructs
,”
J. Biomech.
0021-9290,
42
(
13
), pp.
2177
2182
.
12.
Poole
,
C. A.
, 1997, “
Articular Cartilage Chondrons: Form, Function and Failure
,”
J. Anat.
0021-8782,
191
(
1
), pp.
1
13
.
13.
Maroudas
,
A.
, 1979, “
Physicochemical Properties of Articular Cartilage
,”
Adult Articular Cartilage
,
M. A. R.
Freeman
, ed.,
Pitman Medical
,
London
, pp.
215
290
.
14.
Appelman
,
T. P.
,
Mizrahi
,
J.
,
Elisseeff
,
J. H.
, and
Seliktar
,
D.
, 2009, “
The Differential Effect of Scaffold Composition and Architecture on Chondrocyte Response to Mechanical Stimulation
,”
Biomaterials
0142-9612,
30
(
4
), pp.
518
525
.
15.
Michalek
,
A. J.
, and
Iatridis
,
J. C.
, 2007, “
A Numerical Study to Determine Pericellular Matrix Modulus and Evaluate Its Effects on the Micromechanical Environment of Chondrocytes
,”
J. Biomech.
0021-9290,
40
(
6
), pp.
1405
1409
.
16.
Alexopoulos
,
L. G.
,
Setton
,
L. A.
, and
Guilak
,
F.
, 2005, “
The Biomechanical Role of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
Acta Biomater.
1742-7061,
1
(
3
), pp.
317
325
.
17.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1999, “
Modelling of Location- and Time-Dependent Deformation of Chondrocytes During Cartilage Loading
,”
J. Biomech.
0021-9290,
32
(
6
), pp.
563
572
.
18.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1663
1673
.
19.
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2007, “
In-Situ Measurements of Chondrocyte Deformation Under Transient Loading
,”
Eur. Cells Mater
1473-2262,
13
, pp.
100
111
.
20.
Kim
,
E.
,
Guilak
,
F.
, and
Haider
,
M. A.
, 2008, “
The Dynamic Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions Under Cyclic Compressive Loading
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
6
), p.
061009
.
21.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2006, “
Analysis of the Mechanical Behavior of Chondrocytes in Unconfined Compression Tests for Cyclic Loading
,”
J. Biomech.
0021-9290,
39
(
4
), pp.
603
616
.
22.
Ofek
,
G.
,
Natoli
,
R. M.
, and
Athanasiou
,
K. A.
, 2009, “
In Situ Mechanical Properties of the Chondrocyte Cytoplasm and Nucleus
,”
J. Biomech.
0021-9290,
42
(
7
), pp.
873
877
.
23.
Babalola
,
O. M.
, and
Bonassar
,
L. J.
, 2009, “
Parametric Finite Element Analysis of Physical Stimuli Resulting From Mechanical Stimulation of Tissue Engineered Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061014
.
24.
Appelman
T. P.
,
Mizrahi
J.
,
Elisseeff
,
J. H.
, and
Seliktar
,
D.
, 2011, “
The Influence of Biological Motifs and Dynamic Mechanical Stimulation in Hydrogel Scaffold Systems on the Phenotype of Chondrocytes
,”
Biomaterials
0142-9612,
32
(
6
), pp.
1508
1516
.
25.
Elbert
,
D. L.
, and
Hubbell
,
J. A.
, 2001, “
Conjugate Addition Reactions Combined With Free-Radical Cross-Linking for the Design of Materials for Tissue Engineering
,”
Biomacromolecules
1525-7797,
2
(
2
), pp.
430
441
.
26.
Liao
,
H.
,
Munoz-Pinto
,
D.
,
Qu
,
X.
,
Hou
,
Y.
,
Grunlan
,
M. A.
, and
Hahn
,
M. S.
, 2008, “
Influence of Hydrogel Mechanical Properties and Mesh Size on Vocal Fold Fibroblast Extracellular Matrix Production and Phenotype
,”
Acta Biomater.
1742-7061,
4
(
5
), pp.
1161
1171
.
27.
Knight
,
M. M.
,
van de Breevaart Bravenboer
,
J.
,
Lee
,
D. A.
,
van Osch
,
G. J.
,
Weinans
,
H.
, and
Bader
,
D. L.
, 2002, “
Cell and Nucleus Deformation in Compressed Chondrocyte-Alginate Constructs: Temporal Changes and Calculation of Cell Modulus
,”
Biochim. Biophys. Acta
0006-3002,
1570
(
1
), pp.
1
8
.
28.
Freeman
,
P. M.
,
Natarajan
,
R. N.
,
Kimura
,
J. H.
, and
Andriacchi
,
T. P.
, 1994, “
Chondrocyte Cells Respond Mechanically to Compressive Loads
,”
J. Orthop. Res.
0736-0266,
12
(
3
), pp.
311
320
.
29.
Trickey
,
W. R.
,
Baaijens
,
F. P.
,
Laursen
,
T. A.
,
Alexopoulos
,
L. G.
, and
Guilak
,
F.
, 2006, “
Determination of the Poisson’s Ratio of the Cell: Recovery Properties of Chondrocytes After Release From Complete Micropipette Aspiration
,”
J. Biomech.
0021-9290,
39
(
1
), pp.
78
87
.
30.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2008, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
0021-9290,
41
(
2
), pp.
454
464
.
31.
Dikovsky
D.
,
Bianco-Peled
H.
, and
Seliktar
,
D.
, 2008, “
Defining the Role of Matrix Compliance and Proteolysis in Three-Dimensional Cell Spreading and Remodeling
,”
Biophysical Journal
,
94
(
7
), pp.
2914
2925
.
32.
Zhang
,
Q. Y.
,
Wang
,
X. H.
,
Wei
,
X. C.
, and
Chen
,
W. Y.
, 2008, “
Characterization of Viscoelastic Properties of Normal and Osteoarthritic Chondrocytes in Experimental Rabbit Model
,”
Osteoarthritis Cartilage
1063-4584,
16
(
7
), pp.
837
840
.
33.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
, 2000, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
0736-0266,
18
(
6
), pp.
891
898
.
34.
Bader
,
D. L.
,
Ohashi
,
T.
,
Knight
,
M. M.
,
Lee
,
D. A.
, and
Sato
,
M.
, 2002, “
Deformation Properties of Articular Chondrocytes: A Critique of Three Separate Techniques
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
69
78
.
35.
Loeser
,
R. F.
, 2002, “
Integrins and Cell Signaling in Chondrocytes
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
119
124
.
36.
Gallant
,
N. D.
, and
Garcia
,
A. J.
, 2007, “
Model of Integrin-Mediated Cell Adhesion Strengthening
,”
J. Biomech.
0021-9290,
40
(
6
), pp.
1301
1309
.
37.
Li
,
F.
,
Redick
,
S. D.
,
Erickson
,
H. P.
, and
Moy
,
V. T.
, 2003, “
Force Measurements of the Alpha5beta1 Integrin-Fibronectin Interaction
,”
Biophys. J.
0006-3495,
84
(
2
), pp.
1252
1262
.
38.
Litvinov
,
R. I.
,
Shuman
,
H.
,
Bennett
,
J. S.
, and
Weisel
,
J. W.
, 2002, “
Binding Strength and Activation State of Single Fibrinogen-Integrin Pairs on Living Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
11
), pp.
7426
7431
.
39.
Thoumine
,
O.
,
Kocian
,
P.
,
Kottelat
,
A.
, and
Meister
,
J. J.
, 2000, “
Short-Term Binding of Fibroblasts to Fibronectin: Optical Tweezers Experiments and Probabilistic Analysis
,”
Eur. Biophys. J.
0175-7571,
29
(
6
), pp.
398
408
.
40.
Adams
,
M. A.
, 2006, “
The Mechanical Environment of Chondrocytes in Articular Cartilage
,”
Biorheology
0006-355X,
43
(
3–4
), pp.
537
545
.
41.
Kurtis
,
M. S.
,
Schmidt
,
T. A.
,
Bugbee
,
W. D.
,
Loeser
,
R. F.
, and
Sah
,
R. L.
, 2003, “
Integrin-Mediated Adhesion of Human Articular Chondrocytes to Cartilage
,”
Arthritis Rheum.
0004-3591,
48
(
1
), pp.
110
118
.
42.
Clark
,
A. L.
,
Barclay
,
L. D.
,
Matyas
,
J. R.
, and
Herzog
,
W.
, 2003, “
In Situ Chondrocyte Deformation With Physiological Compression of the Feline Patellofemoral Joint
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
553
568
.
43.
Han
,
S. K.
,
Federico
,
S.
,
Grillo
,
A.
,
Giaquinta
,
G.
, and
Herzog
,
W.
, 2007, “
The Mechanical Behaviour of Chondrocytes Predicted With a Micro-Structural Model of Articular Cartilage
,”
Biomech. Model. Mechanobiol.
1617-7959,
6
(
3
), pp.
139
150
.
44.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1990, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
0021-9290,
23
(
2
), pp.
145
155
.
45.
Mizrahi
,
J.
,
Maroudas
,
A.
,
Lanir
,
Y.
,
Ziv
,
I.
, and
Webber
,
T. J.
, 1986, “
The ‘Instantaneous’ Deformation of Cartilage: Effects of Collagen Fiber Orientation and Osmotic Stress
,”
Biorheology
0006-355X,
23
(
4
), pp.
311
330
.
46.
Mizrahi
,
J.
,
Maroudas
,
A.
, and
Benaim
,
E.
, 1990, “
Unconfined Compression for Studying Cartilage Creep
,”
Methods in Cartilage Research
,
J.
Mizrahi
,
A.
Maroudas
, and
E.
Benaim
, eds.,
Academic
,
London
, pp.
293
298
.
You do not currently have access to this content.