In this work, we examine the dynamics of fluid flow in a mechanical heart valve when the solid inertia and leaflet compliance are important. The fluid is incompressible and Newtonian, and the leaflet is an incompressible neo-Hookean material. In the case of an inertialess leaflet, we find that the maximum valve opening angle and the time that the valve remains closed increase as the shear modulus of the leaflet decreases. More importantly, the regurgitant volume decreases with decreasing shear modulus. When we examined the forces exerted on the leaflet, we found that the downward motion of the leaflet is initiated by a vertical force exerted on its right side and, later on, by a vertical force exerted on the top side of the leaflet. In the case of solid inertia, we find that the maximum valve opening angle and the regurgitant volume are larger than in the case of an inertialess leaflet. These results highlight the importance of solid compliance in the dynamics of blood flow in a mechanical heart valve. More importantly, they indicate that mechanical heart valves with compliant leaflets may have smaller regurgitant volumes and smaller shear stresses than the ones with rigid leaflets.

1.
Yoganathan
,
A.
,
Chandran
,
K.
, and
Sotiropoulos
,
F.
, 2005, “
Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions
,”
Ann. Biomed. Eng.
0090-6964,
33
(
12
), pp.
1689
1694
.
2.
Sacks
,
M.
,
Schoen
,
F.
, and
Mayer
,
J.
, 2009, “
Bioengineering Challenges for Heart Valve Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
1523-9829,
11
, pp.
289
313
.
3.
Kidane
,
A.
,
Burriesci
,
G.
,
Cornejo
,
P.
,
Dooley
,
A.
,
Sarkar
,
S.
,
Bonhoeffer
,
P.
,
Edirisinghe
,
M.
, and
Seifalian
,
A.
, 2009, “
Current Developments and Future Prospects for Heart Valve Replacement Therapy
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
88
(
1
), pp.
290
303
.
4.
Chandran
,
K.
,
Schoephoerster
,
R.
, and
Dellsperger
,
K.
, 1989, “
Effect of Prosthetic Mitral Valve Geometry and Orientation on Flow Dynamics in a Model Human Left Ventricle
,”
J. Biomech.
0021-9290,
22
(
1
), pp.
51
65
.
5.
Sotiropoulos
,
F.
, and
Borazjani
,
I.
, 2009, “
A Review of State-of-the-Art Numerical Methods for Simulating Flow Through Mechanical Heart Valves
,”
Med. Biol. Eng. Comput.
0140-0118,
47
(
3
), pp.
245
256
.
6.
Krishnan
,
S.
,
Udaykumar
,
H.
,
Marshall
,
J.
, and
Chandran
,
K.
, 2006, “
Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure
,”
Ann. Biomed. Eng.
0090-6964,
34
(
10
), pp.
1519
1534
.
7.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
, 2000, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
125
134
.
8.
Choi
,
C.
, and
Kim
,
C.
, 2009, “
Numerical Analysis on the Hemodynamics and Leaflet Dynamics in a Bileaflet Mechanical Heart Valve Using a Fluid-Structure Interaction Method
,”
ASAIO J.
0162-1432,
55
, pp.
428
437
.
9.
Cheng
,
R.
,
Lai
,
Y.
, and
Chandran
,
K.
, 2004, “
Three-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1471
1483
.
10.
Sacks
,
M.
,
Merryman
,
W.
, and
Schmidt
,
D.
, 2009, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
0021-9290,
42
, pp.
1804
1824
.
11.
Manning
,
K.
,
Kini
,
V.
,
Fontaine
,
A.
,
Deutsch
,
S.
, and
Tarbell
,
J.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artificial Organs
,
27
(
9
), pp.
840
846
.
12.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
, 2000, “
A Two-Dimensional Fluid-Structure Interaction Model of the Aortic Valve
,”
J. Biomech.
0021-9290,
33
, pp.
1079
1088
.
13.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
, 2003, “
A Three-Dimensional Computational Analysis of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
0021-9290,
36
, pp.
103
112
.
14.
Vigmostad
,
S.
,
Udaykumar
,
H.
,
Lu
,
J.
, and
Chandran
,
K.
, 2010, “
Fluid-Structure Interaction Methods in Biological Flows With Special Emphasis on Heart Valve Dynamics
,”
International Journal for Numerical Methods in Biomedical Engineering
,
26
(
3-4
), pp.
435
470
.
15.
Stijnen
,
J.
,
de Hart
,
J.
,
Bovendeerd
,
P.
, and
de Vosse
,
F.
, 2004, “
Evaluation of a Fictitious Domain Method for Predicting Dynamic Response of Mechanical Heart Valves
,”
J. Fluids Struct.
0889-9746,
19
, pp.
835
850
.
16.
Dumont
,
K.
,
Stijnen
,
J.
,
Vierendeels
,
J.
,
van de Vosse
,
F.
, and
Verdonck
,
P.
, 2004, “
Validation of a Fluid-Structure Interaction Model of a Heart Valve Using the Dynamic Mesh Method in Fluent
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
(
3
), pp.
139
146
.
17.
Forsythe
,
N.
, and
Mueller
,
J.
, 2008, “
Validation of a Fluid-Structure Interaction Model for a Bileaflet Mechanical Heart Valve
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
22
(
8
), pp.
541
553
.
18.
Einstein
,
D.
,
Pin
,
F.
,
Jiao
,
X.
,
Kuprat
,
A.
,
Carson
,
J.
,
Kunzelman
,
K.
,
Cochran
,
R.
,
Guccione
,
J.
, and
Ratcliffe
,
M.
, 2010, “
Fluid-Structure Interactions of the Mitral Valve and Left Heart: Comprehensive Strategies, Past, Present and Future
,”
International Journal for Numerical Methods in Biomedical Engineering
,
26
(
3-4
), pp.
348
380
.
19.
Gkanis
,
V.
, and
Housiadas
,
C.
, 2010, “
A Time-Dependent Numerical Analysis of Flow in a Mechanical Heart Valve: Comparison With Experimental Results
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
24
(
5
), pp.
157
168
.
20.
Malvern
,
L.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Engelman
,
M.
, and
Sani
,
R.
, 1982, “
The Implementation of Normal and/or Tangential Boundary Conditions in Finite Element Codes for Incompressible Fluid Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
2
, pp.
225
238
.
22.
Hahn
,
G.
, 1991, “
A Modified Euler Method for Dynamic Analyses
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
943
955
.
23.
Heil
,
M.
,
Hazel
,
A.
, and
Boyle
,
J.
, 2008, “
Solvers for Large-Displacement Fluid-Structure Interaction Problems: Segregated Versus Monolithic Approaches
,”
Comput. Mech.
0178-7675,
43
, pp.
91
101
.
24.
Amestoy
,
P.
,
Guermouche
,
A.
,
L’Excellent
,
J. -Y.
, and
Pralet
,
S.
, 2006, “
Hybrid Scheduling for the Parallel Solution of Linear Systems
,”
Parallel Comput.
0167-8191,
32
(
2
), pp.
136
156
.
25.
Amestoy
,
P. R.
,
Duff
,
I. S.
,
L’Excellent
,
J. -Y.
, and
Koster
,
J.
, 2001, “
A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
23
(
1
), pp.
15
41
.
26.
Guivier-Curien
,
C.
,
Deplano
,
V.
, and
Bertrand
,
E.
, 2009, “
Validation of a Numerical 3-D Fluid-Structure Interaction Model for a Prosthetic Valve Based on Experimental PIV Measurements
,”
Med. Eng. Phys.
1350-4533,
31
, pp.
986
993
.
You do not currently have access to this content.