The kinematics of the human ankle is commonly modeled as a biaxial hinge joint model. However, significant variations in axis orientations have been found between different individuals and also between different foot configurations. For ankle rehabilitation robots, information regarding the ankle kinematic parameters can be used to estimate the ankle and subtalar joint displacements. This can in turn be used as auxiliary variables in adaptive control schemes to allow modification of the robot stiffness and damping parameters to reduce the forces applied at stiffer foot configurations. Due to the large variations observed in the ankle kinematic parameters, an online identification algorithm is required to provide estimates of the model parameters. An online parameter estimation routine based on the recursive least-squares (RLS) algorithm was therefore developed in this research. An extension of the conventional biaxial ankle kinematic model, which allows variation in axis orientations with different foot configurations had also been developed and utilized in the estimation algorithm. Simulation results showed that use of the extended model in the online algorithm is effective in capturing the foot orientation of a biaxial ankle model with variable joint axis orientations. Experimental results had also shown that a modified RLS algorithm that penalizes a deviation of model parameters from their nominal values can be used to obtain more realistic parameter estimates while maintaining a level of estimation accuracy comparable to that of the conventional RLS routine.

1.
Dettwyler
,
M.
,
Stacoff
,
A.
,
Kramers-de Quervain
,
I. A.
, and
Stussi
,
E.
, 2004, “
Modelling of the Ankle Joint Complex. Reflections With Regards to Ankle Prostheses
,”
J. Foot Ankle Surg.
1067-2516,
10
, pp.
109
119
.
2.
Dul
,
J.
, and
Johnson
,
G. E.
, 1985, “
A Kinematic Model of the Human Ankle
,”
J. Biomed. Eng.
0141-5425,
7
, pp.
137
143
.
3.
Inman
,
V. T.
, 1976,
The Joints of the Ankle
,
Williams and Wilkins
,
Baltimore
.
4.
Isman
,
R. E.
, and
Inman
,
V. T.
, 1968, “
Anthropometric Studies of the Human Foot and Ankle
,” Biomechanics Laboratory, University of California, San Francisco and Berkeley, Technical Report No. 58, p.
33
.
5.
Demarais
,
D. M.
,
Bachschmidt
,
R. A.
, and
Harris
,
G. F.
, 2002, “
The Instantaneous Axis of Rotation (IAOR) of the Foot and Ankle: A Self-Determining System With Implications for Rehabilitation Medicine Application
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
10
(
4
), pp.
232
238
.
6.
Engsberg
,
J. R.
, 1987, “
A Biomechanical Analysis of the Talocalcaneal Joint—In Vitro
,”
J. Biomech.
0021-9290,
20
(
4
), pp.
429
442
.
7.
Gregorio
,
R. D.
,
Parenti-Castelli
,
V.
,
O’Connor
,
J. J.
, and
Leardini
,
A.
, 2007, “
Mathematical Models of Passive Motion at the Human Ankle Joint by Equivalent Spatial Parallel Mechanisms
,”
Med. Biol. Eng. Comput.
0140-0118,
45
, pp.
305
313
.
8.
Leardini
,
A.
,
O’Connor
,
J. J.
,
Catani
,
F.
, and
Giannini
,
S.
, 1999, “
A Geometric Model of the Human Ankle Joint
,”
J. Biomech.
0021-9290,
32
, pp.
585
591
.
9.
Ying
,
N.
, and
Kim
,
W.
, 2005, “
Determining Dual Euler Angles of the Ankle Complex In Vivo Using ‘Flock of Birds’ Electromagnetic Tracking Device
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
98
107
.
10.
Wright
,
I. C.
,
Neptune
,
R. R.
,
Van den Bogert
,
A. J.
, and
Nigg
,
B. M.
, 2000, “
The Influence of Foot Positioning on Ankle Sprains
,”
J. Biomech.
0021-9290,
33
, pp.
513
519
.
11.
Wright
,
I. C.
,
Neptune
,
R. R.
,
Van den Bogert
,
A. J.
, and
Nigg
,
B. M.
, 2000, “
The Effects of Ankle Compliance and Flexibility on Ankle Sprains
,”
Med. Sci. Sports Exercise
0195-9131,
32
(
3
), pp.
260
265
.
12.
Scott
,
S. H.
, and
Winter
,
D. A.
, 1993, “
Biomechanical Model of the Human Foot: Kinematics and Kinetics During the Stance Phase of Walking
,”
J. Biomech.
0021-9290,
26
(
9
), pp.
1091
1104
.
13.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
, 2007, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
11
), pp.
1940
1950
.
14.
Apkarian
,
J.
,
Naumann
,
S.
, and
Cairns
,
B.
, 1989, “
A Three-Dimensional Kinematic and Dynamic Model of the Lower Limb
,”
J. Biomech.
0021-9290,
22
(
2
), pp.
143
155
.
15.
Leardini
,
A.
, and
Moschella
,
D.
, 2002, “
Dynamic Simulation of the Natural and Replaced Human Ankle Joint
,”
Med. Biol. Eng. Comput.
0140-0118,
40
, pp.
193
199
.
16.
van den Bogert
,
A. J.
,
Smith
,
G. D.
, and
Nigg
,
B. M.
, 1994, “
In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach
,”
J. Biomech.
0021-9290,
27
(
12
), pp.
1477
1488
.
17.
Lewis
,
G. S.
,
Sommer
,
H. J.
, and
Piazza
,
S. J.
, 2006, “
In Vitro Assessment of a Motion-Based Optimization Method for Locating the Talocrural and Subtalar Joint Axes
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
596
603
.
18.
Satici
,
A. C.
,
Erdogan
,
A.
, and
Patoglu
,
V.
, 2009, “
Design of a Reconfigurable Ankle Rehabilitation Robot and Its Use for the Estimation of the Ankle Impedance
,”
Proceedings of the International Conference on Rehabilitation Robotics
, pp.
257
264
.
19.
Tsai
,
L. -W.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
20.
Sayed
,
A. H.
, and
Kailath
,
T.
, 1998, “
Recursive Least-Squares Adaptive Filters
,”
The Digital Signal Processing Handbook
,
V. K.
Madisetti
and
D. B.
Williams
, eds.,
IEEE
,
New York
, pp.
21.1
21.35
.
21.
Lundberg
,
A.
,
Svensson
,
O. K.
,
Nemeth
,
G.
, and
Selvik
,
G.
, 1989, “
The Axis of Rotation of the Ankle Joint
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
71
(
1
), pp.
94
99
.
22.
Barnett
,
C. H.
, and
Napier
,
J. R.
, 1952, “
The Axis of Rotation at the Ankle Joint in Man; Its Influence Upon the Form of the Talus and the Mobility of the Fibula
,”
J. Anat.
0021-8782,
86
(
1
), pp.
1
9
.
23.
Tsoi
,
Y. H.
, and
Xie
,
S. Q.
, 2010, “
Design and Control of a Parallel Robot for Ankle Rehabilitation
,”
International Journal of Intelligent Systems Technologies and Applications
,
8
, pp.
100
113
.
24.
Tsoi
,
Y. H.
, and
Xie
,
S. Q.
, 2008, “
Impedance Control of Ankle Rehabilitation Robot
,”
Proceedings of the International Conference on Robotics and Biomimetics
, pp.
840
845
.
You do not currently have access to this content.