Maintaining vascular access (VA) patency continues to be the greatest challenge for dialysis patients. VA dysfunction, primarily due to venous neointimal hyperplasia development and stenotic lesion formation, is mainly attributed to complex hemodynamics within the arteriovenous fistula (AVF). The effect of VA creation and the subsequent geometrical remodeling on the hemodynamics and shear forces within a mature patient-specific AVF is investigated. A 3D reconstructed geometry of a healthy vein and a fully mature patient-specific AVF was developed from a series of 2D magnetic resonance image scans. A previously validated thresholding technique for region segmentation and lumen cross section contour creation was conducted in MIMICS 10.01, allowing for the creation of a 3D reconstructed geometry. The healthy vein and AVF computational models were built, subdivided, and meshed in GAMBIT 2.3. The computational fluid dynamic (CFD) code FLUENT 6.3.2 (Fluent Inc., Lebanon, NH) was employed as the finite volume solver to determine the hemodynamics and shear forces within the healthy vein and patient-specific AVF. Geometrical alterations were evaluated and a CFD analysis was conducted. Substantial geometrical remodeling was observed, following VA creation with an increase in cross-sectional area, out of plane curvature (maximum angle of curvature in AVF=30deg), and angle of blood flow entry. The mean flow velocity entering the vein of the AVF is dramatically increased. These factors result in complex three-dimensional hemodynamics within VA junction (VAJ) and efferent vein of the AVF. Complex flow patterns were observed and the maximum and mean wall shear stress (WSS) magnitudes are significantly elevated. Flow reversal was found within the VAJ and efferent vein. Extensive geometrical remodeling during AVF maturation does not restore physiological hemodynamics to the VAJ and venous conduit of the AVF, and high WSS and WSS gradients, and flow reversal persist. It is theorized that the vessel remodelling and the continued non-physiological hemodynamics within the AVF compound to result in stenotic lesion development.

1.
Albayrak
,
R.
,
Yuksel
,
S.
,
Colbay
,
M.
,
Degirmenci
,
B.
,
Acarturk
,
G.
,
Haktanir
,
A.
, and
Karaman
,
O.
, 2007, “
Hemodynamic Changes in the Cephalic Vein of Patients With Hemodialysis Arteriovenous Fistula
,”
J. Clin. Ultrasound
0091-2751,
35
(
3
), pp.
133
137
.
2.
Ates
,
A.
,
Özyazicioglu
,
A.
,
Yekeler
,
I.
,
Ceviz
,
M.
,
Erkut
,
B.
,
Karapolat
,
S.
,
Koçogullari
,
C. U.
, and
Kocak
,
H.
, 2006, “
Primary and Secondary Patency Rates and Complications of Upper Extremity Arteriovenous Fistulae Created for Hemodialysis
,”
Tohoku J. Exp. Med.
0040-8727,
210
, pp.
91
97
.
3.
Gibson
,
K. D.
,
Gillen
,
D. L.
,
Caps
,
M. T.
,
Kohler
,
T. R.
,
Sherrard
,
D. J.
, and
Stehman-Breen
,
C. O.
, 2001, “
Vascular Access Survival and Incidence of Revisions: A Comparison of Prosthetic Grafts, Simple Autogenous Fistulas, and Venous Transposition Fistulas From the United States Renal Data System Dialysis Morbidity and Mortality Study
,”
J. Vasc. Surg.
0741-5214,
34
, pp.
694
700
.
4.
Roy-Chaudhury
,
P.
,
Kelly
,
B. S.
,
Zhang
,
J.
,
Narayana
,
A.
,
Desai
,
P.
,
Melhem
,
M.
,
Duncan
,
H.
, and
Heffelfinger
,
S. C.
, 2003, “
Hemodialysis Vascular Access Dysfunction: From Pathophysiology to Novel Therapies
,”
Blood Purif
0253-5068,
21
, pp.
99
110
.
5.
Roy-Chaudhury
,
P.
,
Sukhatme
,
V. P.
, and
Cheung
,
A. K.
, 2006, “
Hemodialysis Vascular Access Dysfunction: A Cellular and Molecular Viewpoint
,”
J. Am. Soc. Nephrol.
1046-6673,
17
, pp.
1112
1127
.
6.
Patel
,
S. T.
,
Hughes
,
J.
, and
Mills
,
J. L.
, Sr.
, 2003, “
Failure of Arteriovenous Fistula Maturation: An Unintended Consequence of Exceeding Dialysis Outcome Quality Initiative Guidelines for Hemodialysis Access
,”
J. Vasc. Surg.
0741-5214,
38
, pp.
439
445
.
7.
Caro
,
C. G.
,
Parker
,
K. H.
, and
Doorly
,
D. J.
, 1995, “
Essentials of Blood Flow
,”
Perfusion
0267-6591,
10
(
3
), pp.
131
134
.
8.
Albers
,
F. J.
, 1994, “
Causes of Hemodialysis Access Failure
,”
Adv. Ren. Replace Ther.
1073-4449,
1
, pp.
107
118
.
9.
Rotmans
,
J. I.
,
Velema
,
E.
,
Verhagen
,
H. J. M.
,
Blankensteijn
,
J. D.
,
Kastelein
,
J. J. P.
,
de Kleijn
,
D. P. V.
,
Yo
,
M.
,
Pasterkamp
,
G.
, and
Stroes
,
E. S. G.
, 2003, “
Rapid Arteriovenous Graft Failure Due to Intimal Hyperplasia: A Porcine, Bilateral, Carotid Arteriovenous Graft Model
,”
J. Surg. Res.
0022-4804,
113
, pp.
161
171
.
10.
Haruguchi
,
H.
, and
Teraoka
,
S.
, 2003, “
Intimal Hyperplasia and Hemodynamic Factors in Arterial Bypass and Arteriovenous Grafts: A Review
,”
Int. J. Artif. Organs
0391-3988,
6
, pp.
227
235
.
11.
Kanterman
,
R. Y.
,
Vesely
,
T. M.
,
Pilgram
,
T. K.
,
Guy
,
B. W.
,
Windus
,
D. W.
, and
Picus
,
D.
, 1995, “
Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty
,”
Radiology
0033-8419,
195
, pp.
135
139
.
12.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
2035
2042
.
13.
Van Tricht
,
I.
,
De Wachter
,
D.
,
Tordoir
,
J.
, and
Verdonck
,
P.
, 2005, “
Hemodynamics and Complications Encountered With Arteriovenous Fistulas and Grafts as Vascular Access for Hemodialysis: A Review
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
1142
1157
.
14.
Ene-Iordache
,
B.
,
Mosconi
,
L.
, and
Remuzzi
,
G.
, 2001, “
Computational Fluid Dynamics of a Vascular Access Case for Hemodialysis
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
284
292
.
15.
Fillinger
,
M. F.
,
Reinitz
,
E. R.
,
Schwartz
,
R. A.
,
Resetarits
,
D. E.
,
Paskaniak
,
A. M.
, and
Bredenberg
,
C. E.
, 1989, “
Beneficial Effects of Banding on Venus Intimal-Medial Hyperplasia in Arteriovenous Looped Grafts
,”
Am. J. Surg.
0002-9610,
158
, pp.
87
94
.
16.
Fillinger
,
M. F.
,
Reinitz
,
E. R.
,
Schwartz
,
R. A.
,
Resetarits
,
D. E.
,
Paskaniak
,
A. M.
,
Bruch
,
D.
, and
Bredenberg
,
C. E.
, 1990, “
Graft Geometry and Venous Intimal-Medial Hyperplasia in Arteriovenous Loop Grafts
,”
J. Vasc. Surg.
0741-5214,
11
, pp.
556
566
.
17.
Hofstra
,
L.
,
Bergmans
,
D. C. J. J.
,
Leuissen
,
K. M. L.
,
Hoeks
,
A. P. G.
,
Kitslaar
,
P. J. E. H. M.
,
Daemen
,
M. J. A. P.
, and
Tordoir
,
J. H. M.
, 1995, “
Anastomotic Intimal Hyperplasia in Prosthetic Arteriovenous Fistulas for Hemodialysis Is Associated With Initial High Flow Velocity and Not With Mismatch in Elastic Properties
,”
J. Am. Soc. Nephrol.
1046-6673,
6
, pp.
1625
1633
.
18.
Lee
,
S. -W.
,
Fischer
,
P. F.
,
Loth
,
F.
,
Royston
,
T. J.
,
Grogan
,
J. K.
, and
Bassiouny
,
H. S.
, 2005, “
Flow-Induced Vein-Wall Vibration in an Arteriovenous Graft
,”
J. Fluids Struct.
0889-9746,
20
, pp.
837
852
.
19.
Longest
,
P. W.
, and
Kleinstreuer
,
C.
, 2000, “
Computational Haemodynamics Analysis and Comparison Study of Arterio-Venous Grafts
,”
J. Med. Eng. Technol.
0309-1902,
24
(
3
), pp.
102
110
.
20.
Loth
,
F.
,
Fischer
,
P. F.
,
Arslan
,
N.
,
Bertram
,
C. D.
,
Lee
,
S. E.
,
Royston
,
T. J.
,
Shaalan
,
W. E.
, and
Bassiouny
,
H. S.
, 2003, “
Transitional Flow at the Venous Anastomosis of an Arteriovenous Graft: Potential Activation of the ERK1/2 Mechanotransduction Pathway
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
49
61
.
21.
Sivanesan
,
S.
,
How
,
T. V.
,
Black
,
R. A.
, and
Bakran
,
A.
, 1999, “
Flow Patterns in the Radiocephalic Arteriovenous Fistula: An In Vitro Study
,”
J. Biomech.
0021-9290,
32
, pp.
915
925
.
22.
Van Tricht
,
I.
,
De Wachter
,
D.
,
Tordoir
,
J.
, and
Verdonck
,
P.
, 2006, “
Comparison of the Hemodynamics in 6 mm and 4–7 mm Hemodialysis Grafts by Means of CFD
,”
J. Biomech.
0021-9290,
39
, pp.
226
236
.
23.
Carroll
,
G. T.
,
McGloughlin
,
T. M.
,
O’Keeffe
,
L. M.
,
Callanan
,
A.
, and
Walsh
,
M. T.
, 2009, “
Realistic Temporal Variations of Shear Stress Modulate MMP-2 and MCP-1 Expression in Arteriovenous Vascular Access
,”
Cellular and Molecular Bioengineering
,
2
(
4
), pp.
591
605
.
24.
Brien
,
T. O.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2005, “
On Reducing Abnormal Hemodynamics in the Femoral End-to-Side Anastomosis: The Influence of Mechanical Factors
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
310
322
.
25.
Morris
,
L.
,
O’Donnell
,
P.
,
Delassus
,
P.
, and
McGloughlin
,
T.
, 2004, “
Experimental Assessment of Stress Patterns in Abdominal Aortic Aneurysms Using the Photoelastic Method
,”
Strain
,
40
(
4
), pp.
165
172
.
26.
Doyle
,
B. J.
,
Morris
,
L. G.
,
Callanan
,
A.
,
Kelly
,
P.
,
Vorp
,
D. A.
, and
McGloughlin
,
T. M.
, 2008, “
3D Reconstruction and Manufacture of Real Abdominal Aortic Aneurysms: From CT Scan to Silicone Model
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
3
), p.
034501
.
27.
Devereux
,
P.
,
O’Callaghan
,
S.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2005, “
Mass Transport Disturbances in the Distal Graft/Artery Junction of a Peripheral Bypass Graft
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
219
, pp.
465
476
.
28.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, 1991, “
Effect of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
0006-355X,
28
, pp.
241
262
.
29.
Cole
,
J. S.
,
Watterson
,
J. K.
, and
O’Reilly
,
M. J. G.
, 2002, “
Numerical Investigation of the Haemodynamics at a Patched Arterial Bypass Anastomosis
,”
Med. Eng. Phys.
1350-4533,
24
, pp.
393
401
.
30.
Rappitsch
,
G.
, and
Perktold
,
K.
, 1996, “
Pulsatile Albumin Transport in Large Arteries: A Numerical Simulation Study
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
511
519
.
31.
Tu
,
C.
, and
Deville
,
M.
, 1996, “
Pulsatile Flow of Non-Newtonian Fluid Through an Arterial Stenosis
,”
J. Biomech.
0021-9290,
30
, pp.
125
132
.
32.
Walsh
,
M. T.
,
Kavanagh
,
E. G.
,
O’Brien
,
T.
,
Grace
,
P. A.
, and
McGloughlin
,
T.
, 2003, “
On the Existence of an Optimum End-to-Side Junctional Geometry in Peripheral Bypass Surgery—A Computer Generated Study
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
26
, pp.
649
656
.
33.
Walsh
,
M.
,
McGloughlin
,
T.
,
Liepsch
,
D. W.
,
O’Brien
,
T.
,
Morris
,
L.
, and
Ansari
,
A. R.
, 2003, “
On Using Experimentally Estimated Wall Shear Stresses to Validate Numerically Predicted Results
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
217
, pp.
77
90
.
34.
Corpataux
,
J. -M.
,
Haesler
,
E.
,
Silacci
,
P.
,
Ris
,
H. B.
, and
Hayoz
,
D.
, 2002, “
Low-Pressure Environment and Remodelling of the Forearm Vein in Brescia–Cimino Haemodialysis Access
,”
Nephrol. Dial Transplant
0931-0509,
17
, pp.
1057
1062
.
35.
Langille
,
B. L.
, and
O’Donnell
,
F.
, 1986, “
Reductions in Arterial Diameter Produced by Chronic Decreases in Blood Flow Are Endothelium-Dependent
,”
Science
0036-8075,
231
, pp.
405
407
.
36.
Masuda
,
H.
,
Kawamura
,
K.
,
Tohda
,
K.
,
Shozawa
,
T.
,
Sageshima
,
M.
, and
Kamiya
,
A.
, 1989, “
Increase in Endothelial Cell Density Before Artery Enlargement in Flow-Loaded Canine Carotid Artery
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
9
, pp.
812
823
.
37.
Sho
,
E.
,
Komatsu
,
M.
,
Sho
,
M.
,
Nanjo
,
H.
,
Singh
,
T. M.
,
Xu
,
C.
,
Masuda
,
H.
, and
Zarins
,
C. K.
, 2003, “
High Flow Drives Vascular Endothelial Cell Proliferation During Flow-Induced Arterial Remodeling Associated With the Expression of Vascular Endothelial Growth Factor
,”
Exp. Mol. Pathol.
0014-4800,
75
, pp.
1
11
.
38.
DePaola
,
N.
,
Davies
,
P. F.
,
Pritchard
,
W. F.
, Jr.
,
Florez
,
L.
,
Harbeck
,
N.
, and
Polacek
,
D. C.
, 1999, “
Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
, pp.
3154
3159
.
You do not currently have access to this content.