The endothelial surface glycocalyx layer (SGL) and the basement membrane (BM) are two important components of the blood-brain barrier (BBB). They provide large resistance to solute transport across the BBB in addition to the tight junctions in the cleft between adjacent endothelial cells. Due to their glycosaminoglycan compositions, they carry negative charge under physiological conditions. To investigate the charge effect of the SGL and BM on the BBB permeability to charged solutes, we developed an electrodiffusion model for the transport of charged molecules across the BBB. In this model, constant charge densities were assumed in the SGL and in the BM. Both electrostatic and steric interaction and exclusion to charged molecules were considered within the SGL and the BM and at their interfaces with noncharged regions of the BBB. On the basis of permeability data for the positively charged ribonuclease (+4,radius=2.01nm) and negatively charged α-lactalbumin (10,radius=2.08nm) measured in intact rat mesenteric and pial microvessels, our model predicted that the charge density in both SGL and BM would be 30mEq/L, which is comparable to that in the SGL of mesenteric microvessels. Interestingly, our model also revealed that due to the largest concentration drop in the BM, there is a region with a higher concentration of negatively charged α-lactalbumin in the uncharged inter-endothelial cleft, although the concentration of α-lactalbumin is always lower than that of positively charged ribonuclease and that of a neutral solute in the charged SGL and BM.

1.
Nicolazzo
,
J. A.
,
Charman
,
S. A.
, and
Charman
,
W. N.
, 2006, “
Methods to Assess Drug Permeability Across the Blood-Brain Barrier
,”
J. Pharm. Pharmacol.
0373-1022,
58
(
3
), pp.
281
293
.
2.
Ueno
,
M.
,
Sakamoto
,
H.
,
Liao
,
Y. J.
,
Onodera
,
M.
,
Huang
,
C. L.
,
Miyanaka
,
H.
, and
Nakagawa
,
T.
, 2004, “
Blood-Brain Barrier Disruption in the Hypothalamus of Young Adult Spontaneously Hypertensive Rats
,”
Histochem. Cell Biol.
0948-6143,
122
(
2
), pp.
131
137
.
3.
Tarbell
,
J. M.
, and
Pahakis
,
M. Y.
, 2006, “
Mechanotransduction and the Glycocalyx
,”
J. Intern. Med.
0954-6820,
259
(
4
), pp.
339
350
.
4.
Miosge
,
N.
, 2001, “
The Ultrastructural Composition of Basement Membranes In Vivo
,”
Histol. Histopathol
0213-3911,
16
(
4
), pp.
1239
1248
.
5.
Leblond
,
C. P.
, and
Inoue
,
S.
, 1989, “
Structure, Composition, and Assembly of Basement Membrane
,”
Am. J. Anat.
0002-9106,
185
(
4
), pp.
367
390
.
6.
del Zoppo
,
G. J.
, and
Hallenbeck
,
J. M.
, 2000, “
Advances in the Vascular Pathophysiology of Ischemic Stroke
,”
Thromb. Res.
0049-3848,
98
(
3
), pp.
73
81
.
7.
Hamann
,
G. F.
,
Okada
,
Y.
,
Fitridge
,
R.
, and
Delzoppo
,
G. J.
, 1995, “
Microvascular Basal Lamina Antigens Disappear During Cerebral-Ischemia and Reperfusion
,”
Stroke
0039-2499,
26
(
11
), pp.
2120
2126
.
8.
Pardridge
,
W. M.
, 1999, “
Blood-Brain Barrier Biology and Methodology
,”
J. Neurovirol
1355-0284,
5
(
6
), pp.
556
569
.
9.
Cohen
,
Z.
,
Ehret
,
M.
,
Maitre
,
M.
, and
Hamel
,
E.
, 1995, “
Ultrastructural Analysis of Tryptophan-Hydroxylase Immunoreactive Nerve-Terminals in the Rat Cerebral-Cortex and Hippocampus—Their Associations With Local Blood-Vessels
,”
Neuroscience
0306-4522,
66
(
3
), pp.
555
569
.
10.
Hawkins
,
B. T.
, and
Davis
,
T. P.
, 2005, “
The Blood-Brain Barrier/Neurovascular Unit in Health and Disease
,”
Pharmacol. Rev.
0031-6997,
57
(
2
), pp.
173
185
.
11.
Adamson
,
R. H.
,
Huxley
,
V. H.
, and
Curry
,
F. E.
, 1988, “
Single Capillary Permeability to Proteins Having Similar Size But Different Charge
,”
Am. J. Physiol.
0002-9513,
254
(
2
), pp.
H304
H312
.
12.
Fu
,
B. M.
,
Chen
,
B.
, and
Chen
,
W.
, 2003, “
An Electrodiffusion Model for Effects of Surface Glycocalyx Layer on Microvessel Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
284
(
4
), pp.
H1240
H1250
.
13.
Yuan
,
W.
,
Li
,
G.
,
Zeng
,
M.
, and
Fu
,
B. M.
, 2010, “
Modulation of the Blood-Brain Barrier Permeability by Plasma Glycoprotein Orosomucoid
,”
Microvasc. Res.
0026-2862,
80
(
1
), pp.
148
157
.
14.
Deen
,
W. M.
,
Satvat
,
B.
, and
Jamieson
,
J. M.
, 1980, “
Theoretical-Model for Glomerular-Filtration of Charged Solutes
,”
Am. J. Physiol.
0002-9513,
238
(
2
), pp.
F126
F139
.
15.
Stace
,
T. M.
, and
Damiano
,
E. R.
, 2001, “
An Electrochemical Model of the Transport of Charged Molecules Through the Capillary Glycocalyx
,”
Biophys. J.
0006-3495,
80
(
4
), pp.
1670
1690
.
16.
Damiano
,
E. R.
, and
Stace
,
T. M.
, 2002, “
A Mechano-Electrochemical Model of Radial Deformation of the Capillary Glycocalyx
,”
Biophys. J.
0006-3495,
82
(
3
), pp.
1153
1175
.
17.
Allt
,
G.
, and
Lawrenson
,
J. G.
, 1997, “
Is the Pial Microvessel a Good Model for Blood-Brain Barrier Studies?
,”
Brain Res. Rev.
0165-0173,
24
(
1
), pp.
67
76
.
18.
Yuan
,
W.
,
Lv
,
Y.
,
Zeng
,
M.
, and
Fu
,
B. M.
, 2009, “
Non-Invasive Measurement of Solute Permeability in Cerebral Microvessels of the Rat
,”
Microvasc. Res.
0026-2862,
77
(
2
), pp.
166
173
.
19.
Haraldsson
,
B.
, and
Rippe
,
B.
, 1987, “
Orosomucoid as One of the Serum Components Contributing to Normal Capillary Permselectivity in Rat Skeletal-Muscle
,”
Acta Physiol. Scand.
0001-6772,
129
(
1
), pp.
127
135
.
20.
Curry
,
F. E.
,
Rutledge
,
J. C.
, and
Lenz
,
J. F.
, 1989, “
Modulation of Microvessel Wall Charge by Plasma Glycoprotein Orosomucoid
,”
Am. J. Physiol.
0002-9513,
257
(
5
), pp.
H1354
H1359
.
21.
Haraldsson
,
B. S.
,
Johnsson
,
E. K. A.
, and
Rippe
,
B.
, 1992, “
Glomerular Permselectivity Is Dependent on Adequate Serum Concentrations of Orosomucoid
,”
Kidney Int.
0085-2538,
41
(
2
), pp.
310
316
.
22.
Farkas
,
E.
, and
Luiten
,
P. G. M.
, 2001, “
Cerebral Microvascular Pathology in Aging and Alzheimer’s Disease
,”
Prog. Neurobiol.
0301-0082,
64
(
6
), pp.
575
611
.
23.
Vink
,
H.
, and
Duling
,
B. R.
, 1996, “
Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes Within Mammalian Capillaries
,”
Circ. Res.
0009-7330,
79
(
3
), pp.
581
589
.
24.
Adamson
,
R. H.
, and
Clough
,
G.
, 1992, “
Plasma-Proteins Modify the Endothelial-Cell Glycocalyx of Frog Mesenteric Microvessels
,”
J. Physiol. (London)
0022-3751,
445
, pp.
473
486
.
25.
Lawrenson
,
J. G.
,
Reid
,
A. R.
, and
Allt
,
G.
, 1997, “
Molecular Characteristics of Pial Microvessels of the Rat Optic Nerve: Can Pial Microvessels Be Used as a Model for the Blood-Brain Barrier?
,”
Cell Tissue Res.
0302-766X,
288
, pp.
259
265
.
26.
Squire
,
J. M.
,
Chew
,
M.
,
Nneji
,
G.
,
Neal
,
C.
,
Barry
,
J.
, and
Michel
,
C.
, 2001, “
Quasi-Periodic Substructure in the Microvessel Endothelial Glycocalyx: A Possible Explanation for Molecular Filtering?
,”
J. Struct. Biol.
1047-8477,
136
(
3
), pp.
239
255
.
27.
Weinbaum
,
S.
,
Zhang
,
X.
,
Han
,
Y.
,
Vink
,
H.
, and
Cowin
,
S. C.
, 2003, “
Mechanotransduction and Flow Across the Endothelial Glycocalyx
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
13
), pp.
7988
7995
.
28.
Schulze
,
C.
, and
Firth
,
J. A.
, 1992, “
Interendothelial Junctions During Blood-Brain-Barrier Development in the Rat-Morphological-Changes at the Level of Individual Tight Junctional Contacts
,”
Brain Res. Dev. Brain Res.
0165-3806,
69
(
1
), pp.
85
95
.
29.
Adamson
,
R. H.
,
Lenz
,
J. E.
,
Zhang
,
X.
,
Adamson
,
G. N.
,
Weinbaum
,
S.
, and
Curry
,
F. E.
, 2004, “
Oncotic Pressures Opposing Filtration Across Non-Fenestrated Rat Microvessels
,”
J. Physiol. (London)
0022-3751,
557
(
3
), pp.
889
907
.
30.
Cassella
,
J. P.
,
Lawrenson
,
J. G.
, and
Firth
,
J. A.
, 1997, “
Development of Endothelial Paracellular Clefts and Their Tight Junctions in the Pial Microvessels of the Rat
,”
J. Neurocytol.
0300-4864,
2
(
26
), pp.
547
575
.
31.
Paulson
,
O. B.
, and
Newman
,
E. A.
, 1987, “
Does the Release of Potassium From Astrocyte Endfeet Regulate Cerebral Blood Flow?
,”
Science
0036-8075,
237
(
4817
), pp.
896
898
.
32.
Guo
,
P.
,
Weinstein
,
A. M.
, and
Weinbaum
,
S.
, 2000, “
A Hydrodynamic Mechanosensory Hypothesis for Brush Border Microvilli
,”
Am. J. Physiol. Renal Physiol.
,
279
(
4
), pp.
F698
F712
.
33.
Zhang
,
X. B.
,
Adamson
,
R. H.
,
Curry
,
F. R. E.
, and
Weinbaum
,
S.
, 2006, “
A 1-D Model to Explore the Effects of Tissue Loading and Tissue Concentration Gradients in the Revised Starling Principle
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
(
6
), pp.
H2950
H2964
.
34.
Michel
,
C. C.
, and
Curry
,
F. E.
, 1999, “
Microvascular Permeability
,”
Physiol. Rev.
0031-9333,
79
(
3
), pp.
703
761
.
35.
Sugihara-Seki
,
M.
, and
Fu
,
B. M. M.
, 2005, “
Blood Flow and Permeability in Microvessels
,”
Fluid Dyn. Res.
0169-5983,
37
(
1–2
), pp.
82
132
.
36.
Ogston
,
A. G.
,
Preston
,
B. N.
, and
Wells
,
J. D.
, 1973, “
Transport of Compact Particles Through Solutions of Chain-Polymers
,”
Proc. R. Soc. London, Ser. A
0950-1207,
333
(
1594
), pp.
297
316
.
37.
Fu
,
B. M.
,
Weinbaum
,
S.
,
Tsay
,
R. Y.
, and
Curry
,
F. E.
, 1994, “
A Junction-Orifice-Fiber Entrance Layer Model for Capillary-Permeability-Application to Frog Mesenteric Capillaries
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
4
), pp.
502
513
.
38.
Fu
,
B. M.
, and
Shen
,
S.
, 2004, “
Acute VEGF Effect on Solute Permeability of Mammalian Microvessels In Vivo
,”
Microvasc. Res.
0026-2862,
68
(
1
), pp.
51
62
.
39.
Chen
,
B.
, and
Fu
,
B. M.
, 2004, “
An Electrodiffusion-Filtration Model for Effects of Endothelial Surface Glycocalyx on Microvessel Permeability to Macromolecules
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
614
624
.
40.
Chen
,
B.
, and
Fu
,
B. M.
, 2009, “
A Time-Dependent Electrodiffusion-Convection Model for Charged Macromolecule Transport Across the Microvessel Wall and in the Interstitial Space
,”
Cellular and Molecular Bioengineering
,
2
(
4
), pp.
514
532
.
41.
Fraser
,
P. A.
,
Dallas
,
A. D.
, and
Davies
,
S.
, 1990, “
Measurement of Filtration Coefficient in Single Cerebral Microvessels of the Frog
,”
J. Physiol. (London)
0022-3751,
423
, pp.
343
361
.
42.
Mayhan
,
W. G.
, and
Heistad
,
D. D.
, 1986, “
Role of Veins and Cerebral Venous Pressure in Disruption of the Blood-Brain Barrier
,”
Circ. Res.
0009-7330,
59
(
2
), pp.
216
220
.
43.
Li
,
G.
,
Yuan
,
W.
, and
Fu
,
B. M.
, 2010, “
A Model for the Blood-Brain Barrier Permeability to Water and Small Solutes
,”
J. Biomech.
0021-9290
43
(
11
), pp.
2133
2140
(2010).
44.
Weinbaum
,
S.
,
Tsay
,
R.
, and
Curry
,
F. E.
, 1992, “
A Three-Dimensional Junction-Pore-Matrix Model for Capillary Permeability
,”
Microvasc. Res.
0026-2862,
44
(
1
), pp.
85
111
.
45.
Hurlbut
,
C. S.
, and
Edwin Sharp
,
W.
, 1998,
Dana’s Minerals and How to Study Them
, 4th edition,
Wiley
,
New York
.
You do not currently have access to this content.