The effect of phase angle between pressure and flow waveforms on the flow characteristics in stenosed compliant vessels for coronary (phase angle (PA) of approximately 225deg) and peripheral flows (PA of approximately 45deg) is investigated using time resolved digital particle image velocimetry. Synthetic arteries with 50% and 75% stenosis at various physiological conditions with Reynolds numbers (Re) of 250, 350, and 450 and corresponding Womersley parameter (α) of 2.7, 3.2, and 3.7 were studied; wall-shear stresses (WSSs), oscillatory shear index (OSI), and recirculation lengths were determined. Additionally, flow transitional characteristics were examined using power spectral density (PSD), wavenumber spectra, and turbulence statistics of the axial velocity component. It is observed that the coronary flow conditions exhibit lower wall-shear stresses and larger recirculation lengths compared with peripheral flows. Mean peak shear stresses can be as high as 150dyn/cm2 and 92dyn/cm2 for peripheral and coronary flows, respectively, with 50% stenosis at Re=450 and α=3.7. These values can be as high as 590dyn/cm2 and 490dyn/cm2, respectively, for the same conditions with 75% stenosis. The OSI is close to 0.5 near the reattachment point indicating fluctuating WSS over the entire cardiac cycle for both 50% and 75% stenosis. For 50% stenosis, the OSI fluctuated at various locations over the length of the vessel indicating several regions of recirculation in contrast to a distinct recirculation region observed for 75% stenosis. PSD plots across various cross-sections along the length of the vessel and wavenumber spectra along the centerline indicate that turbulence occurs only for 75% stenosis. For coronary flows, the streamwise locations where the flow transitions to turbulence and relaminarizes are approximately one diameter upstream compared with peripheral flows indicating that coronary flows are more susceptible to turbulence.

1.
World Health Organization
, 2007, “
Prevention of Cardiovascular Disease: Guideline for Assessment and Management of Total Cardiovascular Disease Risk
,” Genva.
2.
Rosamond
,
W.
,
Flegal
,
K.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S. M.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lloyd-Jones
,
D.
,
McDermott
,
M.
,
Meigs
,
J.
,
Moy
,
C.
,
Nichol
,
G.
,
O’Donnell
,
C.
,
Roger
,
V.
,
Sorlie
,
P.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wilson
,
M.
, and
Hong
,
Y.
, 2008, “
Heart Disease and Stroke Statistics—2008 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
0009-7322,
117
(
4
), pp.
e25
e146
.
3.
Texon
,
M.
, 1960, “
The Hemodynamic Concept of Atherosclerosis
,”
Bull. N. Y. Acad. Med.
0028-7091,
36
, pp.
263
274
.
4.
Wootton
,
D. M.
, and
Ku
,
D. N.
, 1999, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
(
1
), pp.
299
329
.
5.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
(
1046
), pp.
109
133
.
6.
Friedman
,
M. H.
,
Hutchins
,
G. M.
,
Bargeron
,
C. B.
,
Deters
,
O. J.
, and
Mark
,
F. F.
, 1981, “
Correlation of Human Arterial Morphology With Hemodynamic Measurements in Arterial Casts
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
3
), pp.
204
207
.
7.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation—Positive Correlation Between Plaque Location and Low and Oscillating Shear-Stress
,”
Arterioscler. Thromb., Vasc., Biol.
,
5
(
3
), pp.
293
302
.
8.
Cho
,
Y. I.
,
Back
,
L. H.
,
Crawford
,
D. W.
, and
Cuffel
,
R. F.
, 1983, “
Experimental-Study of Pulsatile and Steady Flow Through a Smooth Tube and an Atherosclerotic Coronary-Artery Casting of Man
,”
J. Biomech.
0021-9290,
16
(
11
), pp.
933
946
.
9.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
, 1984, “
Pulsatile Poststenotic Flow Studies With Laser Doppler Anemometry
,”
J. Biomech.
0021-9290,
17
(
9
), pp.
695
705
.
10.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial-Distribution of Atherosclerotic Lesions in Human Coronary-Arteries
,”
Circ. Res.
0009-7330,
66
(
4
), pp.
1045
1066
.
11.
Ojha
,
M.
,
Cobbold
,
R. S. C.
,
Johnston
,
K. W.
, and
Hummel
,
R. L.
, 1989, “
Pulsatile Flow Through Constricted Tubes—An Experimental Investigation Using Photochromic Tracer Methods
,”
J. Fluid Mech.
0022-1120,
203
, pp.
173
197
.
12.
Back
,
L. H.
, and
Crawford
,
D. W.
, 1992, “
Wall Shear-Stress Estimates in Coronary-Artery Constrictions
,”
ASME J. Biomech. Eng.
0148-0731,
114
(
4
), pp.
515
520
.
13.
Smith
,
F. T.
, 1979, “
The Separating Flow Through a Severely Constricted Symmetric Tube
,”
J. Fluid Mech.
0022-1120,
90
(
04
), pp.
725
754
.
14.
Reese
,
J. M.
, and
Thompson
,
D. S.
, 1998, “
Shear Stress in Arterial Stenoses: A Momentum Integral Model
,”
J. Biomech.
0021-9290,
31
(
11
), pp.
1051
1057
.
15.
Rosenfeld
,
M.
, and
Einav
,
S.
, 1995, “
The Effect of Constriction Size on the Pulsatile Flow in a Channel
,”
ASME J. Fluids Eng.
0098-2202,
117
(
4
), pp.
571
576
.
16.
Siegel
,
J. M.
,
Markou
,
C. P.
,
Ku
,
D. N.
, and
Hanson
,
S. R.
, 1994, “
A Scaling Law for Wall Shear Rate Through an Arterial Stenosis
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
4
), pp.
446
451
.
17.
Mittal
,
R.
,
Simmons
,
S. P.
, and
Udaykumar
,
H. S.
, 2001, “
Application of Large-Eddy Simulation to the Study of Pulsatile Flow in a Modeled Arterial Stenosis
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
4
), pp.
325
332
.
18.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
, 2003, “
Physiological Flow Analysis in Significant Human Coronary Artery Stenoses
,”
Biorheology
0006-355X,
40
(
4
), pp.
451
476
.
19.
Bluestein
,
D.
,
Gutierrez
,
C.
,
Londono
,
M.
, and
Schoephoerster
,
R. T.
, 1999, “
Vortex Shedding in Steady Flow Through a Model of an Arterial Stenosis and Its Relevance to Mural Platelet Deposition
,”
Ann. Biomed. Eng.
0090-6964,
27
(
6
), pp.
763
773
.
20.
Bluestein
,
D.
, 2004, “
Research Approaches for Studying Flow-Induced Thromboembolic Complications in Blood
,”
Expert Rev. Med. Devices
,
1
(
1
), pp.
65
80
.
21.
Bluestein
,
D.
,
Niu
,
L. J.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
, 1997, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
0090-6964,
25
(
2
), pp.
344
356
.
22.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Nunez
,
G.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
, 1993, “
Effects of Local Geometry and Fluid-Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler. Thromb.
1049-8834,
13
(
12
), pp.
1806
1813
.
23.
Back
,
L. H.
, and
Roschke
,
E. J.
, 1972, “
Shear-Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion
,”
ASME J. Appl. Mech.
0021-8936,
39
(
3
), pp.
677
681
.
24.
Sherwin
,
S. J.
, and
Blackburn
,
H. M.
, 2005, “
Three-Dimensional Instabilities and Transition of Steady and Pulsatile Axisymmetric Stenotic Flows
,”
J. Fluid Mech.
0022-1120,
533
, pp.
297
327
.
25.
Beratlis
,
N.
,
Balaras
,
E.
,
Parvinian
,
B.
, and
Kiger
,
K.
, 2005, “
A Numerical and Experimental Investigation of Transitional Pulsatile Flow in a Stenosed Channel
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1147
1157
.
26.
Womersley
,
J. R.
, 1955, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.
27.
Qiu
,
Y. C.
, and
Tarbell
,
J. M.
, 2000, “
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
77
85
.
28.
Adrian
,
R. J.
, 1991, “
Particle-Imaging Techniques for Experimental Fluids Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
261
304
.
29.
Willert
,
C. E.
, and
Gharib
,
M.
, 1991, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
10
(
4
), pp.
181
193
.
30.
2007,
Particle Image Velocimetry: A Practical Guide
,
M.
Raffel
,
C. E.
Willert
,
S. T.
Wereley
, and
J.
Kompenhans
, eds.,
Springler
,
New York
.
31.
Abhiven
,
C.
, 2002,
A Hybrid Dynamically Adaptive, Super-Spatio Temporal Digital Particle Image Velocimetry for Multi-Phase Flows
,
Virginia Polytechnic and State University
,
Blacksburg
.
32.
Carroll
,
R.
, and
Falsetti
,
H.
, 1976, “
Retrograde Coronary Artery Flow in Aortic Valve Disease
,”
Circulation
0009-7322,
54
(
3
), pp.
494
499
.
33.
Fam
,
W. M.
, and
Mcgregor
,
M.
, 1964, “
Effect of Coronary Vasodilator Drugs on Retrograde Flow in Areas of Chronic Myocardial Ischemia
,”
Circ. Res.
0009-7330,
15
(
4
), pp.
355
365
.
34.
Berry
,
J. L.
,
Santamarina
,
A.
,
Moore
,
J. E.
,
Roychowdhury
,
S.
, and
Routh
,
W. D.
, 2000, “
Experimental and Computational Flow Evaluation of Coronary Stents
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
386
398
.
35.
Yazdani
,
S. K.
,
Moore
,
J. E.
,
Berry
,
J. L.
, and
Vlachos
,
P. P.
, 2004, “
DPIV Measurements of Flow Disturbances in Stented Artery Models: Adverse Affects of Compliance Mismatch
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
559
566
.
36.
Charonko
,
J.
,
Etebari
,
A.
,
Akle
,
B.
,
Vlachos
,
P.
, and
Leo
,
D.
, 2003, “
Novel Non-Invasive Methods for In-Vitro or Ex-Vivo Vessel Compliance Measurements
,”
2003 BMES Annual Fall Meeting
.
37.
Charonko
,
J.
,
Ragab
,
S. A.
, and
Vlachos
,
P. P.
, 2009, “
A Scaling Parameter for Predicting Pressure Wave Reflection in Stented Arteries
,”
ASME J. Med. Devices
1932-6181,
3
(
1
), p.
011006
.
38.
Anayiotos
,
A. S.
,
Pedroso
,
P. D.
,
Eleftheriou
,
E. C.
,
Venugopalan
,
R.
, and
Holman
,
W. L.
, 2002, “
Effect of a Flow-Streamlining Implant at the Distal Anastomosis of a Coronary Artery Bypass Graft
,”
Ann. Biomed. Eng.
0090-6964,
30
(
7
), pp.
917
926
.
39.
Budwig
,
R.
, 1994, “
Refractive-Index Matching Methods for Liquid Flow investigations
,”
Exp. Fluids
0723-4864,
17
(
5
), pp.
350
355
.
40.
Dong
,
S. C.
, and
Meng
,
H.
, 2001, “
Chebyshev Spectral Method and Chebyshev Noise Processing Procedure for Vorticity Calculation in PIV Post-Processing
,”
Exp. Therm. Fluid Sci.
0894-1777,
24
(
1–2
), pp.
47
59
.
41.
Etebari
,
A.
, and
Vlachos
,
P. P.
, 2005, “
Improvements on the accuracy of Derivative Estimation From DPIV Velocity Measurements
,”
Exp. Fluids
0723-4864,
39
(
6
), pp.
1040
1050
.
42.
Karri
,
S.
,
Charonko
,
J.
, and
Vlachos
,
P. P.
, 2009, “
Robust Wall Gradient Estimation Using Radial Basis Functions and Proper Orthogonal Decomposition (POD) for Particle Image Velocimetry (PIV) Measured Fields
,”
Meas. Sci. Technol.
0957-0233,
20
(
4
), p.
045401
.
43.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S. V.
, and
Vlachos
,
P. P.
, 2008, “
A Time Resolved DPIV In-Vitro Evaluation of Coronary Stents in Realistic Conditions: Part II—Influence of Stent Configuration
,” ASME Paper No. SBC2008-192651.
44.
Charonko
,
J.
,
Karri
,
S.
,
Schmieg
,
J.
,
Prabhu
,
S. V.
, and
Vlachos
,
P. P.
, 2008, “
A Time Resolved DPIV In-Vitro Evaluation of Coronary Stents in Realistic Conditions: Part I—Influence of Stent Configuration
,” ASME Paper No. SBC2008-192651.
45.
Coanda
,
H.
, 1936, “
Device for Deflecting A Stream of Elastic Fluid Projected Into an Elastic Fluid
,” U.S. Patent No. 2,052,869.
46.
Erath
,
B. D.
, and
Plesniak
,
M. W.
, 2006, “
The Occurrence of the Coanda Effect in Pulsatile Flow Through Static Models of the Human Vocal Folds
,”
J. Acoust. Soc. Am.
0001-4966,
120
(
2
), pp.
1000
1011
.
47.
Cox
,
D. A.
,
Vita
,
J. A.
,
Treasure
,
C. B.
,
Fish
,
R. D.
,
Alexander
,
R. W.
,
Ganz
,
P.
, and
Selwyn
,
A. P.
, 1989, “
Atherosclerosis Impairs Flow-Mediated Dilation of Coronary-Arteries in Humans
,”
Circulation
0009-7322,
80
(
3
), pp.
458
465
.
48.
Drexler
,
H.
,
Zeiher
,
A.
,
Wollschlager
,
H.
,
Meinertz
,
T.
,
Just
,
H.
, and
Bonzel
,
T.
, 1989, “
Flow-Dependent Coronary Artery Dilatation in Humans
,”
Circulation
0009-7322,
80
(
3
), pp.
466
474
.
49.
Chua
,
L. P.
,
Yu
,
S. C. M.
, and
Xue
,
Q.
, 2001, “
Scaling Laws for Wall Shear Stress Through Stenoses Under Steady and Pulsatile Flow Conditions
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
, pp.
503
514
.
50.
So
,
R. M. C.
, 1987, “
Inlet Centerline Turbulence Effects on Reattachment Length in Axisymmetrical Sudden-Expansion Flows
,”
Exp. Fluids
0723-4864,
5
(
6
), pp.
424
426
.
51.
Etheridge
,
D. W.
, and
Kemp
,
P. H.
, 1978, “
Measurements of Turbulence Downstream of a Rearward Facing Step
,”
J. Fluid Mech.
0022-1120,
86
(
3
), pp.
545
566
.
You do not currently have access to this content.