Metal-on-metal hip resurfacing is becoming increasingly popular, and a number of new devices have been recently introduced that, in the short term, appear to have satisfactory outcome but many questions are still open on the biomechanics of the resurfaced femur. This could be investigated by means of finite element analysis, but, in order to be effective in discerning potential critical conditions, the accuracy of the models’ predictions should be assessed. The major goal of this study was to validate, through a combined experimental-numerical study, a finite element modeling procedure for the simulation of resurfaced femurs. In addition, a preliminary biomechanical analysis of the changes induced in the femoral neck biomechanics by the presence of the device was performed, under a physiologic range of hip joint reaction directions. For this purpose, in vitro tests and a finite element model based on the same specimen were developed using a cadaver femur. The study focused on the Conserve Plus, one of the most common contemporary resurfacing designs. Five loading configurations were identified to correspond to the extremes of physiological directions for the hip joint. The agreement between experimental measurements and numerical predictions was good both in the prediction of the femoral strains (R2>0.9), and in the prosthesis micromotions (error<20μm), giving confidence in the model predictions. The preliminary biomechanical analysis indicated that the strains in the femoral neck are moderately affected by the presence of the prosthesis, apart from localized strain increments that can be considerable, always predicted near the stem. Low micromotions and contact pressure were predicted, suggesting a good stability of the prosthesis. The model accuracy was good in the prediction of the femoral strains and moderately good in the prediction of the bone-prosthesis micromovements. Although the investigated loading conditions were not completely physiological, the preliminary biomechanical analysis showed relatively small changes for the proximal femur after implantation. This validated model can support realistic simulations to examine physiological load configurations and the effects of variations in prosthesis design and implantation technique.

1.
Amstutz
,
H. C.
,
Beaule
,
P. E.
,
Dorey
,
F. J.
,
Le Duff
,
M. J.
,
Campbell
,
P. A.
, and
Gruen
,
T. A.
, 2004, “
Metal-on-Metal Hybrid Surface Arthroplasty: Two to Six-Year Follow-Up Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86-A
(
1
), pp.
28
39
.
2.
Charnley
,
J.
, 1961, “
Arthroplasty of the Hip. A New Operation
,”
Lancet
0140-6736,
277
(
7187
), pp.
1129
1132
.
3.
Bell
,
R. S.
,
Schatzker
,
J.
,
Fornasier
,
V. L.
, and
Goodman
,
S. B.
, 1985, “
A Study of Implant Failure in the Wagner Resurfacing Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
67
(
8
), pp.
1165
1175
.
4.
Head
,
W. C.
, 1981, “
Wagner Surface Replacement Arthroplasty of the Hip. Analysis of Fourteen Failures in Forty-One Hips
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
63
(
3
), pp.
420
427
.
5.
Howie
,
D. W.
,
Campbell
,
D.
,
McGee
,
M.
, and
Cornish
,
B. L.
, 1990, “
Wagner Resurfacing Hip Arthroplasty. The Results of One Hundred Consecutive Arthroplasties After Eight to Ten Years
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
72
(
5
), pp.
708
714
.
6.
Ritter
,
M. A.
, and
Gioe
,
T. J.
, 1986, “
Conventional Versus Resurfacing Total Hip Arthroplasty. A Long-Term Prospective Study of Concomitant Bilateral Implantation of Prostheses
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
68
(
2
), pp. 216–225.
7.
Freeman
,
M. A.
, and
Bradley
,
G. W.
, 1983, “
ICLH Surface Replacement of the Hip. An Analysis of the First 10 Years
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
65
(
4
), pp.
405
411
.
8.
Amstutz
,
H. C.
,
Dorey
,
F.
, and
O'Carroll
,
P. F.
, 1986, “
THARIES Resurfacing Arthroplasty. Evolution and Long-Term Results
,”
Clin. Orthop. Relat. Res.
0009-921X,
213
, pp.
92
114
.
9.
Kim
,
W. C.
,
Grogan
,
T.
,
Amstutz
,
H. C.
, and
Dorey
,
F. J. C. O. R. R. I. P.
, 1987, “
Survivorship Comparison of THARIES and Conventional Hip Arthroplasty in Patients Younger Than 40 Years Old
,”
Clin. Orthop. Relat. Res.
0009-921X,
214
, pp.
269
277
.
10.
Amstutz
,
H. C.
, and
Grigoris
,
P.
, 1996, “
Metal on Metal Bearings in Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
329
, pp.
S11
S34
.
11.
McMinn
,
D.
,
Treacy
,
R.
,
Lin
,
K.
, and
Pynsent
,
P.
, 1996, “
Metal on Metal Surface Replacement of the Hip. Experience of the McMinn Prothesis
,”
Clin. Orthop. Relat. Res.
0009-921X,
329
, pp.
S89
S98
.
12.
Daniel
,
J.
,
Pynsent
,
P. B.
, and
McMinn
,
D. J.
, 2004, “
Metal-on-Metal Resurfacing of the Hip in Patients Under the Age of 55 Years With Osteoarthritis
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
86
(
2
), pp.
177
184
.
13.
Glyn-Jones
,
S.
,
Gill
,
H. S.
,
McLardy-Smith
,
P.
, and
Murray
,
D. W.
, 2004, “
Roentgen Stereophotogrammetric Analysis of the Birmingham Hip Resurfacing Arthroplasty. A Two-Year Study
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
86-B
(
2
), pp.
172
176
.
14.
Itayem
,
R.
,
Arndt
,
A.
,
Nistor
,
L.
,
McMinn
,
D.
, and
Lundberg
,
A.
, 2005, “
Stability of the Birmingham Hip Resurfacing Arthroplasty at Two Years. A Radiostereophotogrammetric Analysis Study
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
2
), pp.
158
162
.
15.
Kishida
,
Y.
,
Sugano
,
N.
,
Nishii
,
T.
,
Miki
,
H.
,
Yamaguchi
,
K.
, and
Yoshikawa
,
H.
, 2004, “
Preservation of the Bone Mineral Density of the Femur After Surface Replacement of the Hip
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
86-B
(
2
), pp.
185
189
.
16.
Back
,
D. L.
,
Dalziel
,
R.
,
Young
,
D.
, and
Shimmin
,
A.
, 2005, “
Early Results of Primary Birmingham Hip Resurfacings. An Independent Prospective Study of the First 230 Hips
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
3
), pp.
324
329
.
17.
Buergi
,
M. L.
, and
Walter
,
W. L.
, 2007, “
Hip Resurfacing Arthroplasty: The Australian Experience
,”
J. Arthroplasty
0883-5403,
22
(
7
), pp.
61
65
.
18.
Grigoris
,
P.
,
Roberts
,
P.
,
Panousis
,
K.
, and
Jin
,
Z.
, 2006, “
Hip Resurfacing Arthroplasty: The Evolution of Contemporary Designs
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
95
105
.
19.
Hing
,
C. B.
,
Back
,
D. L.
,
Bailey
,
M.
,
Young
,
D. A.
,
Dalziel
,
R. E.
, and
Shimmin
,
A. J.
, 2007, “
The Results of Primary Birmingham Hip Resurfacings at a Mean of Five Years: An Independent Prospective Review of the First 230 Hips
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
89-B
(
11
), pp.
1431
1438
.
20.
McMinn
,
D.
, and
Daniel
,
J.
, 2006, “
History and Modern Concepts in Surface Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
239
251
.
21.
Mont
,
M. A.
,
Ragland
,
P. S.
,
Etienne
,
G.
,
Seyler
,
T. M.
, and
Schmalzried
,
T. P.
, 2006, “
Hip Resurfacing Arthroplasty
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
14
(
8
), pp.
454
463
.
22.
Steffen
,
R. T.
,
Pandit
,
H. P.
,
Palan
,
J.
,
Beard
,
D. J.
,
Gundle
,
R.
,
McLardy-Smith
,
P.
,
Murray
,
D. W.
, and
Gill
,
H. S.
, 2008, “
The Five-Year Results of the Birmingham Hip Resurfacing Arthroplasty: An Independent Series
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
90-B
(
4
), pp.
436
441
.
23.
Treacy
,
R. B. C.
,
McBryde
,
C. W.
, and
Pynsent
,
P. B.
, 2005, “
Birmingham Hip Resurfacing Arthroplasty: A Minimum Follow-Up of Five Years
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
2
), pp.
167
170
.
24.
Amstutz
,
H. C.
,
Campbell
,
P. A.
, and
Le Duff
,
M. J.
, 2004, “
Fracture of the Neck of the Femur After Surface Arthroplasty of the Hip
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86
, pp.
1874
1877
.
25.
Grigoris
,
P.
,
Roberts
,
P.
,
Panousis
,
K.
, and
Bosch
,
H.
, 2005, “
The Evolution of Hip Resurfacing Arthroplasty
,”
Orthop. Clin. North Am.
0030-5898,
36
(
2
), pp.
125
134
.
26.
Shimmin
,
A. J.
, and
Back
,
D.
, 2005, “
Femoral Neck Fractures Following Birmingham Hip Resurfacing. A National Review of 50 Cases
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
4
), pp.
463
464
.
27.
Shimmin
,
A. J.
,
Bare
,
J.
, and
Back
,
D. L.
, 2005, “
Complications Associated With Hip Resurfacing Arthroplasty
,”
Orthop. Clin. North Am.
0030-5898,
36
, pp.
187
193
.
28.
Little
,
C. P.
,
Ruiz
,
A. L.
,
Harding
,
I. J.
,
McLardy-Smith
,
P.
,
Gundle
,
R.
,
Murray
,
D. W.
, and
Athanasou
,
N. A.
, 2005, “
Osteonecrosis in Retrieved Femoral Heads After Failed Resurfacing Arthroplasty of the Hip
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
87-B
(
3
), pp.
320
323
.
29.
Cristofolini
,
L.
,
Varini
,
E.
, and
Viceconti
,
M.
, 2007, “
In-Vitro Method for Assessing Femoral Implant-Bone Micromotions in Resurfacing Hip Implants Under Different Loading Conditions
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
221
(
8
), pp.
943
950
.
30.
Field
,
R. E.
, and
Rushton
,
N.
, 1989, “
Proximal Femoral Surface Strain Gauge Analysis of a New Epiphyseal Prosthesis
,”
J. Biomed. Eng.
0141-5425,
11
(
2
), pp.
123
129
.
31.
Ganapathi
,
M.
,
Evans
,
S.
, and
Roberts
,
P.
, 2008, “
Strain Pattern Following Surface Replacement of the Hip
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
1
), pp.
13
18
.
32.
Gupta
,
S.
,
New
,
A. M.
, and
Taylor
,
M.
, 2006, “
Bone Remodelling Inside a Cemented Resurfaced Femoral Head
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
21
(
6
), pp.
594
602
.
33.
Little
,
J. P.
,
Taddei
,
F.
,
Viceconti
,
M.
,
Murray
,
D. W.
, and
Gill
,
H. S.
, 2007, “
Changes in Femur Stress After Hip Resurfacing Arthroplasty: Response to Physiological Loads
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
4
), pp.
440
448
.
34.
Long
,
J. P.
, and
Bartel
,
D. L.
, 2006, “
Surgical Variables Affect the Mechanics of a Hip Resurfacing System
,”
Clin. Orthop. Relat. Res.
0009-921X,
453
, pp.
115
122
.
35.
Ong
,
K. L.
,
Kurtz
,
S. M.
,
Manley
,
M. T.
,
Rushton
,
N.
,
Mohammed
,
N. A.
, and
Field
,
R. E.
, 2006, “
Biomechanics of the Birmingham Hip Resurfacing Arthroplasty
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
88-B
(
8
), pp.
1110
1115
.
36.
Radcliffe
,
I. A.
, and
Taylor
,
M.
, 2007, “
Investigation Into the Effect of Varus-Valgus Orientation on Load Transfer in the Resurfaced Femoral Head: A Multi-Femur Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
7
), pp.
780
786
.
37.
Radcliffe
,
I. A.
, and
Taylor
,
M.
, 2007, “
Investigation Into the Affect of Cementing Techniques on Load Transfer in the Resurfaced Femoral Head: A Multi-Femur Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
4
), pp.
422
430
.
38.
Taylor
,
M.
, 2006, “
Finite Element Analysis of the Resurfaced Femoral Head
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
2
), pp.
289
297
.
39.
Udofia
,
I. J.
, and
Jin
,
Z. M.
, 2003, “
Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip-Resurfacing Prostheses
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
537
544
.
40.
Watanabe
,
Y.
,
Shiba
,
N.
,
Matsuo
,
S.
,
Higuchi
,
F.
,
Tagawa
,
Y.
, and
Inoue
,
A.
, 2000, “
Biomechanical Study of the Resurfacing Hip Arthroplasty: Finite Element Analysis of the Femoral Component
,”
J. Arthroplasty
0883-5403,
15
(
4
), pp.
505
511
.
41.
Pollard
,
T. C.
,
Baker
,
R. P.
,
Eastaugh-Waring
,
S. J.
, and
Bannister
,
G. C.
, 2006, “
Treatment of the Young Active Patient With Osteoarthritis of the Hip. A Five- to Seven-Year Comparison of Hybrid Total Hip Arthroplasty and Metal-on-Metal Resurfacing
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
88-B
(
5
), pp.
592
600
.
42.
Viceconti
,
M.
,
Affatato
,
S.
,
Baleani
,
M.
,
Bordini
,
B.
,
Cristofolini
,
L.
, and
Taddei
,
F.
, 2009, “
Pre-Clinical Validation of Joint Prostheses: A Systematic Approach
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
2
(
1
), pp.
120
127
.
43.
Taddei
,
F.
,
Cristofolini
,
L.
,
Martelli
,
S.
,
Gill
,
H. S.
, and
Viceconti
,
M.
, 2006, “
Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy
,”
J. Biomech.
0021-9290,
39
(
13
), pp.
2457
2467
.
44.
Viceconti
,
M.
,
Toni
,
A.
, and
Giunti
,
A.
, 1992, “
Strain Gauge Analysis of Hard Tissues: Factors Influencing Measurements
,”
Experimental Mechanics. Technology Transfer Between High Tech Engineering and Biomechanics
,
E. G.
Little
, ed.,
Elsevier
,
Amsterdam
, pp.
177
184
.
45.
Monti
,
L.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
, 1999, “
An In-Vitro Quantitative Analysis of the Primary Stability of Uncemented Hip Stems
,”
Artif. Organs
0160-564X,
23
(
9
), pp.
851
859
.
46.
Lattanzi
,
R.
,
Baruffaldi
,
F.
,
Zannoni
,
C.
, and
Viceconti
,
M.
, 2004, “
Specialised CT Scan Protocols for 3-D Pre-Operative Planning of Total Hip Replacement
,”
Med. Eng. Phys.
1350-4533,
26
(
3
), pp.
237
245
.
47.
Besl
,
P.
, and
McKay
,
N.
, 1992, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
14
(
2
), pp.
239
256
.
48.
Popescu
,
F.
,
Viceconti
,
M.
,
Grazi
,
E.
, and
Cappello
,
A.
, 2003, “
A New Method to Compare Planned and Achieved Position of an Orthopaedic Implant
,”
Comput. Methods Programs Biomed.
0169-2607,
71
(
2
), pp.
117
127
.
49.
Testi
,
D.
,
Zannoni
,
C.
,
Cappello
,
A.
, and
Viceconti
,
M.
, 2001, “
Border-Tracing Algorithm Implementation for the Femoral Geometry Reconstruction
,”
Comput. Methods Programs Biomed.
0169-2607,
65
(
3
), pp.
175
182
.
50.
Morlock
,
M. M.
,
Bishop
,
N.
,
Zustin
,
J.
,
Hahn
,
M.
,
Ruther
,
W.
, and
Amling
,
M.
, 2008, “
Modes of Implant Failure After Hip Resurfacing: Morphological and Wear Analysis of 267 Retrieval Specimens
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
90
, pp.
89
95
.
51.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
, 1987, “
A Simple Error Estimator and Adaptive Procedure for Practical Engineerng Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
2
), pp.
337
357
.
52.
Taddei
,
F.
,
Schileo
,
E.
,
Helgason
,
B.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2007, “
The Material Mapping Strategy Influences the Accuracy of CT-Based Finite Element Models of Bones: An Evaluation Against Experimental Measurements
,”
Med. Eng. Phys.
1350-4533,
29
(
9
), pp.
973
979
.
53.
Les
,
C. M.
,
Keyak
,
J. H.
,
Stover
,
S. M.
,
Taylor
,
K. T.
, and
Kaneps
,
A. J.
, 1994, “
Estimation of Material Properties in the Equine Metacarpus With Use of Quantitative Computed Tomography
,”
J. Orthop. Res.
0736-0266,
12
(
6
), pp.
822
833
.
54.
Kalender
,
W. A.
, 1992, “
A Phantom for Standardization and Quality Control in Spinal Bone Mineral Measurements by QCT and DXA: Design Considerations and Specifications
,”
Med. Phys.
0094-2405,
19
(
3
), pp.
583
586
.
55.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
, 2003, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
0021-9290,
36
(
7
), pp.
897
904
.
56.
Schileo
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2007, “
Subject-Specific Finite Element Models Can Accurately Predict Strain Levels in Long Bones
,”
J. Biomech.
0021-9290,
40
(
13
), pp.
2982
2989
.
57.
Giddings
,
V. L.
,
Kurtz
,
S. M.
,
Jewett
,
C. W.
,
Foulds
,
J. R.
, and
Edidin
,
A. A.
, 2001, “
A Small Punch Test Technique for Characterizing the Elastic Modulus and Fracture Behavior of PMMA Bone Cement Used in Total Joint Replacement
,”
Biomaterials
0142-9612,
22
(
13
), pp.
1875
1881
.
58.
Mann
,
K. A.
,
Bartel
,
D. L.
,
Wright
,
T. M.
, and
Ingraffea
,
A. R.
, 1991, “
Mechanical Characteristics of the Stem-Cement Interface
,”
J. Orthop. Res.
0736-0266,
9
(
6
), pp.
798
808
.
59.
Viceconti
,
M.
,
Muccini
,
R.
,
Bernakiewicz
,
M.
,
Baleani
,
M.
, and
Cristofolini
,
L.
, 2000, “
Large-Sliding Contact Elements Accurately Predict Levels of Bone-Implant Micromotion Relevant to Osseointegration
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1611
1618
.
60.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
(
7
), pp.
859
871
.
61.
Kim
,
W. C.
,
Amstutz
,
H. C.
,
O'Carroll
,
P. F.
,
Hedley
,
A. K.
,
Coster
,
I.
, and
Schmidt
,
I. J. H. P.
, 1984, “
Porous Ingrowth in Canine Resurfacing Hip Arthroplasty: Analysis of Results With up to a 2-Year Follow-Up
,”
Hip
0095-7216, pp.
211
243
.
62.
Cristofolini
,
L.
,
Juszczyk
,
M.
,
Taddei
,
F.
, and
Viceconti
,
M.
, 2009, “
Strain Distribution in the Proximal Human Femoral Metaphysis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
223
(
3
), pp.
273
288
.
63.
Cristofolini
,
L.
,
Saponara Teutonico
,
A.
,
Monti
,
L.
,
Cappello
,
A.
, and
Toni
,
A.
, 2003, “
Comparative In Vitro Study on the Long Term Performance of Cemented Hip Stems: Validation of a Protocol to Discriminate Between “Good” and “Bad” Designs
,”
J. Biomech.
0021-9290,
36
, pp.
1603
1615
.
64.
Pilliar
,
R. M.
,
Lee
,
J. M.
, and
Maniatopoulos
,
C.
, 1986, “
Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants
,”
Clin. Orthop. Relat. Res.
0009-921X,
208
, pp.
108
113
.
65.
Morlock
,
M. M.
,
Bishop
,
N.
,
Rüther
,
W.
,
Delling
,
G.
, and
Hahn
,
M.
, 2006, “
Biomechanical, Morphological, and Histological Analysis of Early Failures in Hip Resurfacing Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
, pp.
333
344
.
66.
Krause
,
W.
,
Mathis
,
R. S.
, and
Grimes
,
L. W.
, 1988, “
Fatigue Properties of Acrylic Bone Cement: S-N, P-N, and P-S-N Data
,”
J. Biomed. Mater. Res.
0021-9304,
22
(
S14
), pp.
221
244
.
67.
Persson
,
C.
,
Baleani
,
M.
,
Guandalini
,
L.
,
Tigani
,
D.
, and
Viceconti
,
M.
, 2006, “
Mechanical Effects of the Use of Vancomycin and Meropenem in Acrylic Bone Cement
,”
Acta Orthop.
,
77
(
4
), pp.
617
621
. 1745-3674
68.
Reggiani
,
B.
,
Cristofolini
,
L.
,
Varini
,
E.
, and
Viceconti
,
M.
, 2007, “
Predicting the Subject-Specific Primary Stability of Cementless Implants During Pre-Operative Planning: Preliminary Validation of Subject-Specific Finite-Element Models
,”
J. Biomech.
0021-9290,
40
(
11
), pp.
2552
2558
.
69.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
, 1992, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
0009-921X, (
274
), pp.
124
134
.
70.
Iglič
,
A.
,
Kralj-Iglič
,
V.
,
Daniel
,
M.
, and
Maček-Lebar
,
A.
, 2002, “
Computer Determination of Contact Stress Distribution and Size of Weight Bearing Area in the Human Hip Joint
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
(
2
), pp.
185
192
.
71.
Amstutz
,
H. C.
,
Grigoris
,
P.
, and
Dorey
,
F. J.
, 1998, “
Evolution and Future of Surface Replacement of the Hip
,”
J. Orthop. Sci.
0949-2658,
3
(
3
), pp.
169
186
.
72.
McMinn
,
D.
, and
Pynsent
,
P.
, 2002, “
Surgical Aspects of Hip Resurfacing
,”
Transactions of the IMechE International Conference: Engineers and Surgeons Joined at the Hip. Refining Future Strategies in Total Hip Replacement
,
Institute of Mechanical Engineers
,
London
.
73.
Steffen
,
R.
,
O'Rourke
,
K.
,
Gill
,
H. S.
, and
Murray
,
D. W.
, 2007, “
The Anterolateral Approach Leads to Less Disruption of the Femoral Head-Neck Blood Supply Than the Posterior Approach During Hip Resurfacing
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
89-B
(
10
), pp.
1293
1298
.
74.
Cristofolini
,
L.
, 1997, “
A Critical Analysis of Stress Shielding Evaluation of Hip Prostheses
,”
Crit. Rev. Biomed. Eng.
0278-940X,
25
(
4&5
), pp.
409
483
.
75.
Taddei
,
F.
,
Martelli
,
S.
,
Reggiani
,
B.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2006, “
Finite-Element Modeling of Bones From CT Data: Sensitivity to Geometry and Material Uncertainties
,”
IEEE Trans. Biomed. Eng.
0018-9294,
53
(
11
), pp.
2194
2200
.
76.
Schileo
,
E.
,
Taddei
,
F.
,
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2008, “
Subject-Specific Finite Element Models Implementing a Maximum Principal Strain Criterion Are Able to Estimate Failure Risk and Fracture Location on Human Femurs Tested In Vitro
,”
J. Biomech.
0021-9290,
41
(
2
), pp.
356
367
.
You do not currently have access to this content.