Accurate subject-specific body segment parameters (BSPs) are necessary to perform kinetic analyses of human movements with large accelerations, or no external contact forces or moments. A new automated topographical image-based method of estimating segment mass, center of mass (CM) position, and moments of inertia is presented. Body geometry and volume were measured using a laser scanner, then an automated pose and shape registration algorithm segmented the scanned body surface, and identified joint center (JC) positions. Assuming the constant segment densities of Dempster, thigh and shank masses, CM locations, and moments of inertia were estimated for four male subjects with body mass indexes (BMIs) of 19.7–38.2. The subject-specific BSP were compared with those determined using Dempster and Clauser regression equations. The influence of BSP and BMI differences on knee and hip net forces and moments during a running swing phase were quantified for the subjects with the smallest and largest BMIs. Subject-specific BSP for 15 body segments were quickly calculated using the image-based method, and total subject masses were overestimated by 1.7–2.9%.When compared with the Dempster and Clauser methods, image-based and regression estimated thigh BSP varied more than the shank parameters. Thigh masses and hip JC to thigh CM distances were consistently larger, and each transverse moment of inertia was smaller using the image-based method. Because the shank had larger linear and angular accelerations than the thigh during the running swing phase, shank BSP differences had a larger effect on calculated intersegmental forces and moments at the knee joint than thigh BSP differences did at the hip. It was the net knee kinetic differences caused by the shank BSP differences that were the largest contributors to the hip variations. Finally, BSP differences produced larger kinetic differences for the subject with larger segment masses, suggesting that parameter accuracy is more important for studies focused on overweight populations. The new image-based BSP estimation method described in this paper addressed the limitations of currently used geometric and regression methods by using exact limb geometry to determine subject-specific parameters. BSP differences have the largest effect on kinetic analyses of motions with large limb accelerations, for joints farther along the kinematic chain from the known forces and moments, and for subjects with larger limb masses or BMIs.

1.
Pearsall
,
D. J.
, and
Costigan
,
P. A.
, 1999, “
The Effect of Segment Parameter Error on Gait Analysis Results
,”
Gait and Posture
0966-6362,
9
(
3
), pp.
173
183
.
2.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
, 2006, “
Influence of Body Segments' Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1531
1536
.
3.
Ganley
,
K. J.
, and
Powers
,
C. M.
, 2004, “
Determination of Lower Extremity Anthropometric Parameters Using Dual Energy X-Ray Absorptiometry: The Influence on Net Joint Moments During Gait
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
1
), pp.
50
56
.
4.
Andriacchi
,
T. P.
, and
Dyrby
,
C. O.
, 2005, “
Interactions Between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
293
298
.
5.
Sheets
,
A.
,
Corazza
,
S.
,
Abrams
,
G.
,
Safran
,
M.
, and
Andriacchi
,
T.
, 2009, “
Kinematic Differences Between the Flat, Kick and Slice Serves Measured Using a Markerless Motion Capture Method
,”
Proceedings of the ASME 2009 Summer Bioengineering Conference
.
6.
Dempster
,
W. T.
, 1955, “
Space Requirements of the Seated Operator. Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs
,”
U.S.A.F. Wright Air Development Center
, Technical Report No. 55-159, pp.
1
254
.
7.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
, 1969, “
Weight Volume and Center of Mass of Segments of the Human Body
,”
U.S. Air Force
, Technical Documentary Report No. AMRL-TDR 69-70, pp.
1
101
.
8.
Shan
,
G. B.
, and
Bohn
,
C.
, 2003, “
Anthropometrical Data and Coefficients of Regression Related to Gender and Race
,”
Appl. Ergon
0003-6870,
34
(
4
), pp.
327
337
.
9.
Hatze
,
H.
, 1980, “
A Mathematical Model for the Computational Determination of Parameter Values of Anthropomorphic Segments
,”
J. Biomech.
0021-9290,
13
(
10
), pp.
833
843
.
10.
Yeadon
,
M. R.
, 1990, “
The Simulation of Aerial Movement. 2. A Mathematical Inertia Model of the Human Body
,”
J. Biomech.
0021-9290,
23
(
1
), pp.
67
74
.
11.
Burkhart
,
T. A.
,
Arthurs
,
K. L.
, and
Andrews
,
D. M.
, 2008, “
Reliability of Upper and Lower Extremity Anthropometric Measurements and the Effect on Tissue Mass Predictions
,”
J. Biomech.
0021-9290,
41
(
7
), pp.
1604
1610
.
12.
Vaughan
,
C. L.
,
Andrews
,
J. G.
, and
Hay
,
J. G.
, 1982, “
Selection of Body Segment Parameters by Optimization Methods
,”
ASME J. Biomech. Eng.
0148-0731,
104
(
1
), pp.
38
44
.
13.
Dumas
,
R.
,
Cheze
,
L.
, and
Verriest
,
J. P.
, 2007, “
Adjustments to McConville et al. and Young et al. Body Segment Inertial Parameters
,”
J. Biomech.
0021-9290,
40
(
3
), pp.
543
553
.
14.
Martin
,
P. E.
,
Mungiole
,
M.
,
Marzke
,
M. W.
, and
Longhill
,
J. M.
, 1989, “
The use of Magnetic Resonance Imaging for Measuring Segment Inertial Properties
,”
J. Biomech.
0021-9290,
22
(
4
), pp.
367
376
.
15.
Huang
,
H. K.
, and
Wu
,
S. C.
, 1976, “
The Evaluation of Mass Densities of the Human Body In-Vivo From Computerized Tomography Scans
,”
Comput. Biol. Med.
0010-4825,
6
(
4
), pp.
337
344
.
16.
Durkin
,
J. L.
, and
Dowling
,
J. J.
, 2006, “
Body Segment Parameter Estimation of the Human Lower Leg Using an Elliptical Model With Validation From DEXA
,”
Ann. Biomed. Eng.
0090-6964,
34
(
9
), pp.
1483
1493
.
17.
Zatsiorsky
,
V. M.
,
Seluyanov
,
V.
, and
Chugunova
,
L.
, 1990, “
In Vivo Body Segment Inertial Parameters Using a Gamma-Scanner Method
,”
Biomechanics of Human Movement: Applications in Rehabilitation, Sports and Ergonomics
,
N.
Berme
and
A.
Cappozzo
, eds.,
Bertec
,
OH
, pp.
186
202
.
18.
Dumas
,
R.
,
Aissaoui
,
R.
,
Mitton
,
D.
,
Skalli
,
W.
, and
de Guise
,
J. A.
, 2005, “
Personalized Body Segment Parameters From Biplanar Low-Dose Radiography
,”
IEEE Trans. Biomed. Eng.
0018-9294,
52
(
10
), pp.
1756
1763
.
19.
Sarfaty
,
O.
, and
Ladin
,
Z.
, 1993, “
A Video-Based System for the Estimation of the Inertial Properties of Body Segments
,”
J. Biomech.
0021-9290,
26
(
8
), pp.
1011
1016
.
20.
Davidson
,
P. L.
,
Wilson
,
S. J.
,
Wilson
,
B. D.
, and
Chalmers
,
D. J.
, 2008, “
Estimating Subject-Specific Body Segment Parameters Using a 3-Dimensional Modeller Program
,”
J. Biomech.
0021-9290,
41
(
16
), pp.
3506
3510
.
21.
Baca
,
A.
, 1996, “
Precise Determination of Anthropometric Dimensions by Means of Image Processing Methods for Estimating Human Body Segment Parameter Values
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
563
567
.
22.
Jensen
,
R. K.
, 1978, “
Estimation of Biomechanical Properties of 3 Body Types Using a Photogrammetric Method
,”
J. Biomech.
0021-9290,
11
(
8–9
), pp.
349
358
.
23.
Jones
,
P. R. M.
, and
Rioux
,
M.
, 1997, “
Three-Dimensional Surface Anthropometry: Applications to the Human Body
,”
Opt. Lasers Eng.
0143-8166,
28
(
2
), pp.
89
117
.
24.
Norton
,
J.
,
Donaldson
,
N.
, and
Dekker
,
L.
, 2002, “
3D Whole Body Scanning to Determine Mass Properties of Legs
,”
J. Biomech.
0021-9290,
35
(
1
), pp.
81
86
.
25.
Sheets
,
A. L.
,
Corazza
,
S.
, and
Andriacchi
,
T. P.
, 2008, “
An Automated Image-Based Method of 3D Subject Specific Body Segment Parameter Estimation
,” Proceedings of the 2008 American Society of Mechanical Engineers, Summer Bioengineering Conference.
26.
Anguelov
,
D.
,
Srinivasan
,
P.
,
Koller
,
D.
,
Thrun
,
S.
,
Rodgers
,
J.
, and
Davis
,
J.
, 2005, “
SCAPE: Shape Completion and Animation of People
,”
ACM Trans. Graphics
0730-0301,
24
(
3
), pp.
408
416
.
27.
Corazza
,
S.
,
Mündermann
,
L.
, and
Andriacchi
,
T.
, “
Automatic Generation of a Subject Specific Model for Accurate Markerless Motion Capture and Biomechanical Applications
,” IEEE Biomed. Eng. (to be published).
28.
Mirtich
,
B.
, 1996, “
Fast and Accurate Computation of Polyhedral Mass Properties
,”
Journal of Graphics Tools
,
1
(
2
), pp.
31
50
.
29.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
H.
, 2002, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part 1: Ankle, Hip, and Spine
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
543
548
.
30.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X. G.
,
Werner
,
F. W.
, and
Buchholz
,
B.
, 2005, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
981
992
.
31.
Mundermann
,
L.
,
Corazza
,
S.
, and
Andriacchi
,
T. P.
, 2006, “
The Evolution of Methods for the Capture of Human Movement Leading to Markerless Motion Capture for Biomechanical Applications
,”
J. Neuroeng. Rehabil.
,
3
(
6
), pp.
1
11
. 1743-0003
32.
Corazza
,
S.
,
Mundermann
,
L.
,
Chaudhari
,
A. M.
,
Demattio
,
T.
,
Cobelli
,
C.
, and
Andriacchi
,
T. P.
, 2006, “
A Markerless Motion Capture System to Study Musculoskeletal Biomechanics: Visual Hull and Simulated Annealing Approach
,”
Ann. Biomed. Eng.
0090-6964,
34
(
6
), pp.
1019
1029
.
33.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
, 2007, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
5
), pp.
782
793
.
34.
Jensen
,
R. K.
, and
Fletcher
,
P.
, 1994, “
Distribution of Mass to the Segments of Elderly Males and Females
,”
J. Biomech.
0021-9290,
27
(
1
), pp.
89
96
.
35.
Zatsiorsky
,
V. M.
, and
Seluyanov
,
V.
, 1985, “
Estimation of the Mass and Inertia Characteristics of the Human Body by Means of the Best Predictive Regression Equations
,”
Biomechanics IX-B
,
D. A.
Winters
,
R. W.
Norman
,
R. P.
Wells
,
K. C.
Hayes
, and
A. E.
Patla
, eds.,
Human Kinetics
,
Champagne, IL
.
You do not currently have access to this content.