Brace application has been reported to be an effective approach in treating mild to moderate idiopathic adolescent scoliosis. However, little attention is focused on the biomechanical study of patient-specific brace treatment. The purpose of this study was to propose a design method of personalized brace and to analyze its biomechanical behavior and to compare the brace forces with the I-Scan measurement system. Based on a three-dimensional patient-specific finite element model of the spine, rib cage, pelvis, and abdomen, a parametric patient-specific model of a thoracolumbosacral orthosis was built. The interaction between the torso and the brace was modeled by surface-to-surface contact interface. Three standard strap tensions (20 N, 40 N, and 60 N) were loaded on the back of the brace to simulate the strap tension. The I-Scan distribution pressure measurement system was used to measure the different region pressures, and the equivalent forces in these regions were calculated. The spinal curve changes and the forces acted on the brace generated by the strap tension were evaluated and compared with the measurement. The reduction in the coronal curvature was about 60% for a strap tension of 60 N. The sacral slope and the lordosis were partially reduced in this case, but the kyphosis had no obvious change. The brace slightly modified the axial rotation at the apex of the scoliotic curve. The forces generated in finite element analysis were approximately in good agreement with the measurement. The design and biomechanical analysis methods of patient-specific brace should be useful in the design of more effective braces.

1.
Lonstein
,
J. E.
, 1994, “
Adolescent Idiopathic Scoliosis
,”
Lancet
,
344
, pp.
1407
1412
. 0140-6736
2.
Goldberg
,
C. J.
,
Moore
,
D. P.
,
Fogarty
,
E. E.
, and
Dowling
,
F. E.
, 2001, “
Adolescent Idiopathic Scoliosis: The Effect of Brace Treatment on the Incidence of Surgery
,”
Spine
,
26
, pp.
42
47
. 0362-2436
3.
Nachemson
,
A. L.
,
Peterson
,
L. E.
,
Bradford
,
D. S.
,
Burwell
,
R. G.
,
Duhaime
,
M.
,
Edgar
,
A.
,
Eppig
,
M. M.
,
Gardner
,
A. D. H.
,
Kehl
,
D. K.
,
Lidstrom
,
J.
,
Lonstein
,
J. E.
,
Meehan
,
P. L.
,
Orrissy
,
R. T.
,
Nash
,
C. L.
,
Nordwall
,
A.
,
Ogilvie
,
J.
,
Poitras
,
B.
,
Webb
,
J. K.
, and
Willner
,
S. V.
, 1995, “
Effectiveness of Treatment With a Brace in Girls Who Have Adolescent Idiopathic Scoliosis. A Prospective, Controlled Study Based on Data From the Brace Study of the Scoliosis Research Society
,”
J. Bone Jt. Surg., Am. Vol.
,
77
, pp.
815
822
. 0021-9355
4.
Noonan
,
K. J.
,
Weinstein
,
S. L.
,
Jacobson
,
W. C.
, and
Dolan
,
L. A.
, 1996, “
Use of the Milwaukee Brace for Progressive Idiopathic Scoliosis
,”
J. Bone Jt. Surg., Am. Vol.
,
78
, pp.
557
567
. 0021-9355
5.
Asher
,
M.
,
De Smet
,
A.
,
Whitney
,
W.
,
Onish
,
R. N.
,
Cook
,
L.
, and
Bramble
,
J.
, 1987, “
Changes in Spinal Alignment Resulting From Spinal Deformity Orthoses in Patients With Idiopathic Scoliosis
,”
Orthop. Trans.
,
11
, pp.
105
106
.
6.
Labelle
,
H.
,
Dansereau
,
J.
,
Bellefleur
,
C.
, and
Poitras
,
B.
, 1996, “
Three-Dimensional Effect of the Boston Brace on the Thoracic Spine and Rib Cage
,”
Spine
0362-2436,
21
, pp.
59
64
.
7.
Willner
,
S.
, 1984, “
Effect of the Boston Thoracic Brace on the Frontal and Sagittal Curves of the Spine
,”
Acta Orthop. Scand.
,
55
, pp.
457
460
. 0001-6470
8.
Wynarsky
,
G. T.
, and
Schultz
,
A. B.
, 1991, “
Optimization of Skeletal Configuration: Studies of Scoliosis Correction Biomechanics
,”
J. Biomech.
0021-9290,
24
, pp.
721
732
.
9.
Andriacchi
,
T. P.
,
Schultz
,
A. B.
,
Belytschko
,
T. B.
, and
Dewald
,
R.
, 1976, “
Milwaukee Brace Correction of Idiopathic Scoliosis. A Biomechanical Analysis and a Restrospective Study
,”
J. Bone Jt. Surg., Am. Vol.
,
58
, pp.
806
815
. 0021-9355
10.
Gignac
,
D.
,
Aubin
,
C. E.
,
Dansereau
,
J.
, and
Labelle
,
H.
, 2000, “
Optimization Method for 3D Bracing Correction of Scoliosis Using a Finite Element Model
,”
Eur. Spine J.
,
9
, pp.
185
190
. 0940-6719
11.
Patwardhan
,
A. G.
,
Bunch
,
W. H.
, and
Maede
,
K. P.
, 1986, “
A Biomechanical Analog of Curve Progression and Orthotic Stabilization in Idiopathic Scoliosis
,”
J. Biomech.
0021-9290,
19
, pp.
103
117
.
12.
Wong
,
M. S.
,
Mak
,
A. F. T.
,
Luk
,
K. D. K.
,
Evans
,
J. H.
, and
Brown
,
B.
, 2000, “
Effectiveness and Biomechanics of Spinal Orthoses in the Treatment of Adolescent Idiopathic Scoliosis (AIS)
,”
Prosthet. Orthot Int.
,
24
, pp.
148
162
. 0309-3646
13.
Van den Hout
,
J.
,
Van Rhijn
,
L.
,
Van den Munckhof
,
R.
, and
Van Ooy
,
A.
, 2002, “
Interface Corrective Force Measurements in Boston Brace Treatment
,”
Eur. Spine J.
,
11
, pp.
332
335
. 0940-6719
14.
Mac-Thiong
,
J. M.
,
Petit
,
Y.
,
Aubin
,
C. E.
,
Delorme
,
S.
,
Dansereau
,
J.
, and
Labelle
,
H.
, 2004, “
Biomechanical Evaluation of the Boston Brace System for the Treatment of Adolescent Idiopathic Scoliosis: Relationship Between Strap Tension and Brace Interface Forces
,”
Spine
,
29
, pp.
26
32
. 0362-2436
15.
Aubin
,
C. E.
,
Labelle
,
H.
,
Ruszkowski
,
A.
,
Petit
,
Y.
,
Gignac
,
D.
,
Joncas
,
J.
, and
Dansereau
,
J.
, 1999, “
Variability of Strap Tension in Brace Treatment for Adolescent Idiopathic Scoliosis
,”
Spine
,
24
, pp.
349
354
. 0362-2436
16.
Clin
,
J.
,
Aubin
,
C.
, and
Labelle
,
H.
, 2007, “
Virtual Prototyping of a Brace Design for the Correction of Scoliotic Deformities
,”
Med. Biol. Eng. Comput.
,
45
, pp.
467
473
. 0140-0118
17.
Huebner
,
K. H.
, 2001,
The Finite Element Method for Engineers
,
Wiley-IEEE
,
New York
.
18.
Perie
,
D.
,
Aubin
,
C. E.
,
Lacroix
,
M.
,
Lafon
,
Y.
, and
Labelle
,
H.
, 2004, “
Biomechanical Modelling of Orthotic Treatment of the Scoliotic Spine Including a Detailed Representation of the Brace-Torso Interface
,”
Med. Biol. Eng. Comput.
,
42
, pp.
339
344
. 0140-0118
19.
Agur
,
A. M. R.
, 1999,
Grant’s Atlas of Anatomy
, 10th ed.,
Williams and Wilkins
,
Baltimore, MD
.
20.
Goel
,
V. K.
,
Monroe
,
B. T.
,
Gilbertson
,
L. G.
, and
Brinckmann
,
P.
, 1995, “
Interlaminar Shear Stresses and Laminae Separation in a Disc: Finite Element Analysis of the L3–L4 Motion Segment Subjected to Axial Compressive Loads
,”
Spine
,
20
, pp.
689
698
. 0362-2436
21.
Silva
,
M. J.
,
Wang
,
C.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
, 1994, “
Direct and Computed Tomography Thickness Measurements of the Human, Lumbar Vertebral Shell and Endplate
,”
Bone (N.Y.)
8756-3282,
15
, pp.
409
414
.
22.
Sharma
,
M.
,
Langrana
,
N. A.
, and
Rodriguez
,
J.
, 1998, “
Modeling of Facet Articulation as a Nonlinear Moving Contact Problem: Sensitivity Study on Lumbar Facet Response
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
118
125
.
23.
Zhong
,
Z. C.
,
Wei
,
S. H.
,
Wang
,
J. P.
,
Feng
,
C. K.
,
Chen
,
C. S.
, and
Yu
,
C. H.
, 2006, “
Finite Element Analysis of the Lumbar Spine With a New Cage Using a Topology Optimization Method
,”
Med. Eng. Phys.
,
28
, pp.
90
98
. 1350-4533
24.
Polikeit
,
A.
,
Ferguson
,
S. J.
,
Nolte
,
L. P.
, and
Orr
,
T. E.
, 2003, “
Factors Influencing Stresses in the Lumbar Spine After the Insertion of Intervertebral Cages: Finite Element Analysis
,”
Eur. Spine J.
,
12
, pp.
413
420
. 0940-6719
25.
Wu
,
H. C.
, and
Yao
,
R. F.
, 1976, “
Mechanical Behavior of the Human Annulus Fibrosus
,”
J. Biomech.
0021-9290,
9
, pp.
1
7
.
26.
Yamada
,
H.
, and
Evans
,
F. G.
, 1970,
Strength of Biological Materials
,
Williams and Wilkins
,
Baltimore, MD
.
27.
Sundaram
,
S. H.
, and
Feng
,
C. C.
, 1977, “
Finite Element Analysis of the Human Thorax
,”
J. Biomech.
0021-9290,
10
, pp.
505
516
.
28.
Perie
,
D.
,
Aubin
,
C. E.
,
Petit
,
Y.
,
Labelle
,
H.
, and
Dansereau
,
J.
, 2004, “
Personalized Biomechanical Simulations of Orthotic Treatment in Idiopathic Scoliosis
,”
Clin. Biomech. (Bristol, Avon)
,
19
, pp.
190
195
. 0268-0033
29.
Ziegelhofer
,
P. F.
, 1999, “
Material Properties of Commonly-Used Interface Materials and Their Static Coefficients of Friction With Skin and Socks
,”
J. Rehabil. Res. Dev.
,
36
, pp.
161
176
. 0748-7711
30.
Rohlmann
,
A.
,
Neller
,
S.
,
Bergmann
,
G.
,
Graichen
,
F.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2001, “
Effect of an Internal Fixator and a Bone Graft on Intersegmental Spinal Motion and Intradiscal Pressure in the Adjacent Regions
,”
Eur. Spine J.
,
10
, pp.
301
308
. 0940-6719
31.
Zander
,
T.
,
Rohlmann
,
A.
,
Calisse
,
J.
, and
Bergmann
,
G.
, 2001, “
Estimation of Muscle Forces in the Lumbar Spine During Upper-Body Inclination
,”
Clin. Biomech. (Bristol, Avon)
,
16
, pp.
S73
S80
. 0268-0033
32.
Little
,
J. P.
,
Adam
,
C. J.
,
Evans
,
J. H.
,
Pettet
,
G. J.
, and
Pearcy
,
M. J.
, 2007, “
Nonlinear Finite Element Analysis of Anular Lesions in the L4/5 Intervertebral Disc
,”
J. Biomech.
,
40
, pp.
2744
2751
. 0021-9290
33.
Stokes
,
I. A. F.
, 1994, “
Three-Dimensional Terminology of Spinal Deformity: A Report Presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D Terminology of Spinal Deformity
,”
Spine
,
19
, pp.
236
248
. 0362-2436
34.
Vaz
,
G.
,
Roussouly
,
P.
,
Berthonnaud
,
E.
, and
Dimnet
,
J.
, 2002, “
Sagittal Morphology and Equilibrium of Pelvis and Spine
,”
Eur. Spine J.
,
11
, pp.
80
87
. 0940-6719
35.
Galante
,
J.
,
Schultz
,
A.
,
Dewald
,
R. L.
, and
Ray
,
R. D.
, 1970, “
Forces Acting in the Milwaukee Brace on Patients Undergoing Treatment for Idiopathic Scoliosis
,”
J. Bone Jt. Surg., Am. Vol.
,
52
, pp.
498
506
. 0021-9355
36.
Woo
,
S. L.
,
Kuei
,
S. C.
,
Amiel
,
D.
,
Gomez
,
M. A.
,
Hayes
,
W. C.
,
White
,
F. C.
, and
Akeson
,
W. H.
, 1981, “
The Effect of Prolonged Physical Training on the Properties of Long Bone: A Study of Wolff's Law
,”
J. Bone Jt. Surg., Am. Vol.
,
63
, pp.
780
787
. 0021-9355
37.
Wynarsky
,
G. T.
, and
Schultz
,
A. B.
, 1989, “
Trunk Muscle Activities in Braced Scoliosis Patients
,”
Spine
,
14
, pp.
1283
1286
. 0362-2436
38.
Odermatt
,
D.
,
Mathieu
,
P. A.
,
Beausejour
,
M.
,
Labelle
,
H.
, and
Aubin
,
C. E.
, 2003, “
Electromyography of Scoliotic Patients Treated With a Brace
,”
J. Orthop. Res.
,
21
, pp.
931
936
. 0736-0266
39.
Ghista
,
D. N.
,
Viviani
,
G. R.
,
Subbaraj
,
K.
,
Lozada
,
P. J.
,
Srinivasan
,
T. M.
, and
Barnes
,
G.
, 1988, “
Biomechanical Basis of Optimal Scoliosis Surgical Correction
,”
J. Biomech.
,
21
, pp.
77
88
. 0021-9290
You do not currently have access to this content.