In spite of impressive progress in developing general constitutive laws for soft tissues, there exists still no comprehensive model valid for any general deformation scheme. The present study focuses on the uniaxial response of the skin as a model for other multifibrous soft tissues. While the skin’s nonlinear viscoelastic constitutive response has been extensively studied and modeled, the phenomena associated with mechanical preconditioning have so far not been dealt with. Yet preconditioning is an inherent response feature in the skin, both in vitro and in vivo. It is hypothesized that by considering the structure of the elastic and collagen fibers and their individual rheological properties, it is possible to develop a reliable general constitutive law for the skin’s uniaxial response. A stochastic hybrid constitutive model was developed based on the collagen and elastic fiber morphologies and their rheological properties. The multiple protocol uniaxial data of Eshel and Lanir (“Effects of Strain Level and Proteoglycan Depletion on Preconditioning and Viscoelastic Responses of Rat Dorsal Skin,” 2001, Ann. Biomed. Eng., 29, pp. 164–172) served to estimate the model’s parameters and to validate its reliability. Parametric investigation was then used to test model parsimony (minimal form) and to elucidate the roles of response mechanism and the relative contribution of each constituent. The model predictions show a very close fit to the data and good predictive capability. The results are consistent with the quasilinear viscoelastic response of both elastic and collagen fibers and are likewise consistent with the notion (supported by published experimental observations) that preconditioning in collagen is probably due to an increase in the fiber reference length and is due to strain softening (Mullins effect) in elastic fibers. The predictions also agree with the observed predominance of elastic fibers at low strains and suggest that as strain increases, collagen becomes predominant, but the effect of elastic fibers is still significant. The parsimony analysis of the 22 model parameters (18 are nonlinear in the model) points to the predominant role of viscoelasticity and preconditioning in both fibers, followed in order of importance by collagen waviness and elastic fiber nonlinearity. A reliable and comprehensive uniaxial constitutive law for the rat skin was developed based on the tissue microstructure and on its constituents’ rheological properties.

1.
Craik
,
J. E.
, and
McNeil
,
I. R. R.
, 1964, “
Histological Studies of Stressed Skin
,”
Biomechanics and Related Bio-Engineering Topics
,
R. M.
Kenedi
, ed.,
Pergamon
,
Oxford
, pp.
159
164
.
2.
Daly
,
C. H.
, and
Odland
,
G. F.
, 1979, “
Age-Related Changes in the Mechanical Properties of Human Skin
,”
J. Invest. Dermatol.
0022-202X,
73
, pp.
84
87
.
3.
Wilkes
,
G. L.
,
Wildnauer
,
R. H.
, and
Brown
,
I. A.
, 1973, “
Structure-Property Relationship of Skin—A Polymer Composite
,”
CRC Crit. Rev. Bioeng.
,
1
, pp.
453
495
. 0045-642X
4.
Fung
,
Y. C.
, 1993,
Biomechanics—Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
5.
Daly
,
C. H.
, 1982, “
Biomechanical Properties of the Dermis
,”
J. Invest. Dermatol.
0022-202X,
79
, pp.
17s
20s
.
6.
Lanir
,
Y.
, and
Fung
,
Y. C.
, 1974, “
Two-Dimensional Mechanical Properties of Rabbit Skin. I. Experimental System
,”
J. Biomech.
0021-9290,
7
, pp.
29
34
.
7.
Lanir
,
Y.
, and
Fung
,
Y. C.
, 1974, “
Two-Dimensional Mechanical Properties of Rabbit Skin. II. Experimental Results
,”
J. Biomech.
0021-9290,
7
, pp.
171
182
.
8.
Brody
,
G. S.
,
Peng
,
T. J.
, and
Landel
,
R. F.
, 1981, “
The Rheological Properties of Human Skin and Scar Tissue
,”
Bioengineering and the Skin
,”
R.
Marks
and
P. A.
Payne
, eds.,
MTP
,
Lancaster
, pp.
147
158
.
9.
Manschot
,
J. F. M.
, and
Brakkee
,
A. J. M.
, 1986, “
The Measurements and Modeling of the Mechanical Properties of Human Skin In Vivo—I. The Measurements
,”
J. Biomech.
0021-9290,
19
, pp.
511
515
.
10.
Emery
,
J. L.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
, 1997, “
Strain Softening in Rat Left Ventricular Miocardium
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
6
8
.
11.
Gregersen
,
H.
,
Emery
,
J. L.
, and
McCulloch
,
A. D.
, 1998, “
History-Dependent Mechanical Behavior of Guinea-Pig Small Intestine
,”
Ann. Biomed. Eng.
0090-6964,
26
, pp.
850
858
.
12.
Kirton
,
R. S.
,
Taberner
,
A. J.
,
Young
,
A. A.
,
Nielsen
,
P. M. F.
, and
Loielle
,
D. S.
, 2004, “
Strain Softening Is Not Present During Axial Extensions of Rat Intact Right Ventricular Trabeculae in the Presence or Absence of 2,3-Butanedione Monoxime
,”
Am. J. Physiol.
,
286
, pp.
H708
H715
. 0002-9513
13.
Smith
,
L. T.
,
Holbrook
,
K. A.
, and
Byers
,
P. H.
, 1982, “
Structure of the Dermal Matrix During Development and in the Adult
,”
J. Invest. Dermatol.
0022-202X,
79
, pp.
93s
104s
.
14.
Hsu
,
S.
,
Jamieson
,
A. M.
, and
Blackwell
,
J.
, 1994, “
Viscoelastic Studies of Extracellular Matrix Interactions in a Model Native Collagen Gel System
,”
Biorheology
,
31
, pp.
21
36
. 0006-355X
15.
Silver
,
F. H.
,
Kato
,
Y. P.
,
Ohno
,
M.
, and
Wasserman
,
A. J.
, 1992, “
Analysis of Mammalian Connective Tissue: Relationship Between Hierarchical Structures and Mechanical Properties
,”
J. Long Term Eff. Med. Implants
,
2
, pp.
165
198
. 1050-6934
16.
Tregear
,
R. T.
, 1966,
Physical Functions of Skin
,
Academic
,
London
.
17.
Bottoms
,
E.
, and
Shuster
,
S.
, 1963, “
Radiology: Effect of Ultraviolet Light on Skin Collagen
,”
Nature (London)
,
199
, pp.
192
193
. 0028-0836
18.
Hult
,
A. M.
, and
Goltz
,
R. W.
, 1965, “
The Measurement of Elastin in Human Skin and Its Quantity in Relation to Age
,”
J. Invest. Dermatol.
,
44
, pp.
408
412
. 0022-202X
19.
Haut
,
R. C.
, and
Little
,
R. W.
, 1972, “
A Constitutive Equation for Collagen Fibers
,”
J. Biomech.
0021-9290,
5
, pp.
423
430
.
20.
Viidik
,
A.
, 1968, “
A Rheological Model for Uncalcified Parallel Fibered Collagenous Tissue
,”
J. Biomech.
0021-9290,
1
, pp.
3
11
.
21.
Silver
,
F. H.
, 1987,
Biological Materials: Structures, Mechanical Properties, and Modeling of Connective Tissues
,
NYU
,
New York
.
22.
Carton
,
R. W.
,
Dainauskas
,
J.
, and
Clark
,
J. W.
, 1962, “
Elastic Properties of Single Elastic Fibers
,”
J. Appl. Physiol.
,
17
(
3
), pp.
547
551
. 0021-8987
23.
Potts
,
R. O.
, and
Breuer
,
M. M.
, 1983, “
The Low-Strain Viscoelastic Properties of Skin
,”
Bioeng. Skin
,
4
, pp.
105
114
.
24.
Eshel
,
H.
, and
Lanir
,
Y.
, 2001, “
Effects of Strain Level and Proteoglycan Depletion on Preconditioning and Viscoelastic Responses of Rat Dorsal Skin
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
164
172
.
25.
Cohen
,
R. E.
,
Hooley
,
C. J.
, and
McCrum
,
N. G.
, 1976, “
Viscoelastic Creep of Collagenous Tissue
,”
J. Biomech.
0021-9290,
9
, pp.
175
184
.
26.
Lanir
,
Y.
, 1979, “
The Rheological Behavior of the Skin: Experimental Results and a Structural Model
,”
Biorheology
,
16
, pp.
191
202
. 0006-355X
27.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
(
1
), pp.
1
12
.
28.
Wijn
,
P. F. F.
, 1980, “
The Alinear Viscoelastic Properties of Human Skin In Vivo for Small Deformations
,” Ph.D. thesis, Katholieke Universiteit Nijmegen, The Netherlands.
29.
Belkoff
,
S. M.
, and
Haut
,
R. C.
, 1991, “
A Structural Model used to Evaluate the Changing Microstructure of Maturing Rat Skin
,”
J. Biomech.
0021-9290,
24
, pp.
711
720
.
30.
Decraemer
,
W. R.
,
Maes
,
M. A.
, and
Vanhuyse
,
V. J.
, 1980, “
An Elastic Stress-Strain Relation for Soft Biological Tissues Based on Structural Model
,”
J. Biomech.
0021-9290,
13
, pp.
463
468
.
31.
Vlasblom
,
D. C.
, 1967, “
Skin Elasticity
,” Ph.D. thesis, University of Utrecht, The Netherlands.
32.
Reihsner
,
R.
,
Baloghx
,
B.
, and
Menzel
,
E. J.
, 1995, “
Two-Dimensional Elastic Properties of Human Skin in Terms of an Incremental Model at the In Vivo Configuration
,”
Med. Eng. Phys.
1350-4533,
17
, pp.
304
313
.
33.
Kenedi
,
R. M.
,
Gibson
,
T.
, and
Daly
,
C. H.
, 1965, “
Bio-Engineering Studies of the Human Skin: The Effects of Unidirectional Tension
,”
Structure and Function of Connective and Skeletal Tissue
,
S. F.
Jackson
,
R. D.
Harkness
,
S. M.
Partridge
, and
G. R.
Tristram
, eds.,
Butterworths
,
London
, pp.
388
395
.
34.
Veronda
,
D. R.
, and
Westman
,
R. A.
, 1970, “
Mechanical Characterization of Skin—Finite Deformation
,”
J. Biomech.
0021-9290,
3
, pp.
111
124
.
35.
Tong
,
P.
, and
Fung
,
Y. C.
, 1976, “
The Stress-Strain Relationship for the Skin
,”
J. Biomech.
0021-9290,
9
, pp.
649
657
.
36.
Decraemer
,
W. F.
,
Maes
,
M. A.
, and
VanHuyse
,
V. J.
, 1980, “
An Elastic Stress-Strain Relation for Soft Biological Tissues Based on a Structural Model
,”
J. Biomech.
0021-9290,
13
, pp.
463
468
.
37.
Lanir
,
Y.
, 1979, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
0021-9290,
12
, pp.
423
436
.
38.
Kenedi
,
R. M.
,
Gibson
,
T.
,
Daly
,
C. H.
, and
Abrahams
,
M.
, 1960, “
Biomedical Characteristics of Human Skin and Costal Cartilage
,”
Fed. Proc.
,
25
, pp.
1084
1087
. 0014-9446
39.
Fung
,
Y. C.
, 1972, “
Stress-Strain-History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics: Its Foundations and Objectives
,
Y. C.
Fung
,
N.
Perrone
, and
M.
Anliker
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chap. 7.
40.
Barbenel
,
J. C.
,
Evans
,
J. H.
, and
Finlay
,
J. B.
, 1973, “
Stress-Strain-Time Relations for Soft Connective Tissue
,”
Perspectives in Biomedical Engineering
,
R. M.
Kenedi
, ed.,
Macmillan
,
London
, pp.
165
172
.
41.
Decraemer
,
W. F.
,
Maes
,
M. A.
,
VanHuyse
,
V. J.
, and
VanPeperstraete
,
P.
, 1980, “
A Non-Linear Viscoelastic Constitutive Equation for Soft Biological Tissues, Based Upon a Structural Model
,”
J. Biomech.
0021-9290,
13
, pp.
559
564
.
42.
Sanders
,
R.
, 1973, “
Torsional Elasticity of Human Skin In Vivo
,”
Pfluegers Arch.
,
342
, pp.
255
260
. 0031-6768
43.
Rubin
,
M. B.
,
Bodner
,
S. R.
, and
Binur
,
N. S.
, 1998, “
An Elastic-Viscoplastic Model for Excised Facial Tissues
,”
J. Biomech. Eng.
0148-0731,
120
, pp.
686
689
.
44.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Behavior of Sheep Digital Tendons, Including the Effect of Preconditioning
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
78
83
.
45.
Cleary
,
E. G.
, 1966, “
Skin
,”
Extracellular Matrix
,
W. D.
Comper
, ed.,
CRC
,
Boca Raton, FL
, Chap. 4.
46.
Lanir
,
Y.
, 1987, “
Biorheology and Fluid Flux in Swelling Tissues. I: Bicomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
,
24
, pp.
173
187
. 0006-355X
47.
Abrahams
,
M.
, 1967, “
Mechanical Behavior of Tendon In Vitro: A Preliminary Report
,”
Med. Biol. Eng.
0025-696X,
5
, pp.
433
443
.
48.
Lanir
,
Y.
,
Salant
,
E. L.
, and
Foux
,
A.
, 1988, “
Physico-Chemical and Microstructural Changes in Collagen Fiber Bundles Following Stretch In Vitro
,”
Biorheology
,
25
, pp.
591
603
. 0006-355X
49.
Lokshin
,
O.
, 1995, “
Tissue Viscoelasticity and Preconditioning: Microstructural Simulation and Parameter Estimation
,” MS thesis, Technion-IIT, Haifa, Israel.
50.
Houck
,
C. R.
,
Joines
,
J. A.
, and
Kay
,
M. G.
, 1995, “
A Genetic Algorithm for Function Optimization: A Matlab Implementation
,” NCSU-IE Technical Report No. 95-09.
51.
Maroudas
,
A.
,
Wachtel
,
E.
,
Grushko
,
G.
,
Katz
,
E. P.
, and
Weinberg
,
P.
, 1991, “
The Effect of Osmotic and Mechanical Pressure on Water Patitioning in Articular Cartilage
,”
Biochim. Biophys. Acta
,
1073
, pp.
285
294
. 0006-3002
52.
Butler
,
D. L.
,
Grood
,
E. S.
,
Noyes
,
F. R.
,
Zernicke
,
R. F.
, and
Brackett
,
K.
, 1984, “
Effects of Structure and Strain Measurement Technique on the Material Properties of Young Human Tendons and Fascia
,”
J. Biomech.
0021-9290,
17
(
8
), pp.
579
596
.
53.
Van Brocklin
,
D.
, and
Ellis
,
D. G.
, 1965, “
A Study of the Mechanical Behavior of Toe Extensor Tendons Under Applied Stress
,”
Arch. Phys. Med. Rehabil.
,
46
, pp.
369
373
. 0003-9993
54.
Wright
,
D. G.
, and
Rennels
,
D. C.
, 1964, “
A Study of the Elastic Properties of Planar Fascia
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
46-A
, pp.
482
492
.
55.
Gosline
,
J.
,
Lillie
,
M.
,
Carrington
,
E.
,
Guerette
,
P.
,
Ortlepp
,
C.
, and
Savage
,
K.
, 2002, “
Elastic Proteins: Biological Roles and Mechanical Properties
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
357
, pp.
121
132
.
You do not currently have access to this content.