Low wall shear stress (WSS) is implicated in endothelial dysfunction and atherogenesis. The accumulation of macromolecules is also considered as an important factor contributing to the development of atherosclerosis. In the present study, a fluid-wall single-layered model incorporated with shear-dependent transport parameters was used to investigate albumin and low-density lipoprotein (LDL) transport in an in vivo computed tomographic image-based human right coronary artery (RCA). In the fluid-wall model, the bulk blood flow was modeled by the Navier–Stokes equations, Darcy’s law was employed to model the transmural flow in the arterial wall, mass balance of albumin and LDL was governed by the convection-diffusion mechanism with an additional reaction term in the wall, and the Kedem–Katchalsky equations were applied at the endothelium as the interface condition between the lumen and wall. Shear-dependent models for hydraulic conductivity and albumin permeability were derived from experimental data in literature to investigate the influence of WSS on macromolecular accumulation in the arterial wall. A previously developed so-called lumen-free time-averaged scheme was used to approximate macromolecular transport under pulsatile flow conditions. LDL and albumin accumulations in the subendothelial layer were found to be colocalized with low WSS. Two distinct mechanisms responsible for the localized accumulation were identified: one was insufficient efflux from the subendothelial layer to outer wall layers caused by a weaker transmural flow; the other was excessive influx to the subendothelial layer from the lumen caused by a higher permeability of the endothelium. The comparison between steady flow and pulsatile flow results showed that the dynamic behavior of the pulsatile flow could induce a wider and more diffuse macromolecular accumulation pattern through the nonlinear shear-dependent transport properties. Therefore, it is vital to consider blood pulsatility when modeling the shear-dependent macromolecular transport in large arteries. In the present study, LDL and albumin accumulations were observed in the low WSS regions of a human RCA using a fluid-wall mass transport model. It was also found that steady flow simulation could overestimate the magnitude and underestimate the area of accumulations. The association between low WSS and accumulation of macromolecules leading to atherosclerosis may be mediated through effects on transport properties and mass transport and is also influenced by flow pulsatility.

1.
DeBakey
,
M. E.
,
Lawrie
,
G. M.
, and
H.
,
G. D.
, 1985, “
Patterns of Atherosclerosis and Their Surgical Significance
,”
Ann. Surg.
0003-4932,
201
, pp.
115
131
.
2.
Hoff
,
H. F.
,
Heideman
,
C. L.
,
Jackson
,
R. L.
,
Bayardo
,
R. J.
,
Kim
,
H. S.
, and
Gotto
,
A. M. J.
, 1975, “
Localization Patterns of Plasma Apolipoproteins in Human Atherosclerotic Lesions
,”
Circ. Res.
0009-7330,
37
, pp.
72
79
.
3.
Ross
,
R.
, 1993, “
Atherosclerosis: A Defense Mechanism Gone Awry
,”
Am. J. Pathol.
0002-9440,
143
, pp.
987
1002
.
4.
Tarbell
,
J. M.
, 2003, “
Mass Transport in Arteries and the Localization of Atherosclerosis
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
79
118
.
5.
Ethier
,
C. R.
, 2002, “
Computational Modeling of Mass Transfer and Links to Atherosclerosis
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
461
471
.
6.
Rappitsch
,
G.
, and
Perktold
,
K.
, 1996, “
Computer Simulation of Convective Diffusion Processes in Large Arteries
,”
J. Biomech.
0021-9290,
29
, pp.
207
215
.
7.
Ma
,
P.
,
Li
,
X.
, and
Ku
,
D. N.
, 1997, “
Convective Mass Transfer at the Carotid Bifurcation
,”
J. Biomech.
0021-9290,
30
, pp.
565
571
.
8.
Rappitsch
,
G.
,
Perktold
,
K.
, and
Pernkopf
,
E.
, 1997, “
Numerical Modeling of Shear-Dependent Mass Transfer in Large Arteries
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
847
857
.
9.
Qiu
,
Y.
, and
Tarbell
,
J. M.
, 2000, “
Numerical Simulation of Oxygen Mass Transfer in a Compliant Curved Tube Model of a Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
26
38
.
10.
Kaazempur-Mofrad
,
M. R.
, and
Ethier
,
C. R.
, 2001, “
Mass Transport in an Anatomically Realistic Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
121
127
.
11.
Kaazempur-Mofrad
,
M. R.
,
Wada
,
S.
,
Myers
,
J. G.
, and
Ethier
,
C. R.
, 2005, “
Mass Transport and Fluid Flow in Stenotic Arteries: Axisymmetric and Asymmetric Models
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4510
4517
.
12.
Tada
,
S.
, and
Tarbell
,
J. M.
, 2006, “
Oxygen Mass Transport in a Compliant Carotid Bifurcation Model
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
1389
1399
.
13.
Deng
,
X.
,
King
,
M.
, and
Guidoin
,
R.
, 1993, “
Localization of Atherosclerosis in Arterial Junctions. Modeling the Release Rate of Low Density Lipoprotein and Its Breakdown Products Accumulated in Blood Vessel Walls
,”
ASAIO J.
1058-2916,
39
, pp.
M489
M495
.
14.
Deng
,
X.
,
King
,
M.
, and
Guidoin
,
R.
, 1995, “
Localization of Atherosclerosis in Arterial Junctions. Concentration Distribution of Low Density Lipoproteins at the Luminal Surface in Regions of Disturbed Flow
,”
ASAIO J.
1058-2916,
41
, pp.
58
67
.
15.
Wada
,
S.
, and
Karino
,
T.
, 1999, “
Theoretical Study on Flow-Dependent Concentration Polarization of Low Density Lipoproteins at the Luminal Surface of a Straight Artery
,”
Biorheology
0006-355X,
36
, pp.
207
223
.
16.
Wada
,
S.
, and
Karino
,
T.
, 2002, “
Theoretical Prediction of Low-Density Lipoproteins Concentration at the Luminal Surface of an Artery With a Multiple Bend
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
778
791
.
17.
Wada
,
S.
,
Koujiya
,
M.
, and
Karino
,
T.
, 2002, “
Theoretical Study of the Effect of Local Flow Disturbances on the Concentration of Low-Density Lipoproteins at the Luminal Surface of End-to-End Anastomosed Vessels
,”
Med. Biol. Eng. Comput.
0140-0118,
40
, pp.
576
587
.
18.
Moore
,
J. A.
, and
Ethier
,
C. R.
, 1997, “
Oxygen Mass Transfer Calculations in Large Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
469
475
.
19.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
, 2002, “
Computational Analysis of Coupled Blood-Wall Arterial LDL Transport
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
1
8
.
20.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
, 2002, “
Coupled Computational Analysis of Arterial LDL Transport—Effects of Hypertension
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
, pp.
233
241
.
21.
Zunino
,
P.
, 2002, “
Mathematical and Numerical Modeling of Mass Transfer in the Vascular System
,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
22.
Prosi
,
M.
, 2003, “
Computer Simulation von Massetransportvorgängen in Arterien
,” Ph.D. thesis, Technische Universität Graz, Graz, Austria.
23.
Sun
,
N.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
, 2006, “
Fluid-Wall Modelling of Mass Transfer in an Axisymmetric Stenosis: Effects of Shear-Dependent Transport Properties
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
1119
1128
.
24.
Karner
,
G.
, and
Perktold
,
K.
, 2000, “
Effect of Endothelial Injury and Increased Blood Pressure on Albumin Accumulation in the Arterial Wall: A Numerical Study
,”
J. Biomech.
0021-9290,
33
, pp.
709
715
.
25.
Karner
,
G.
,
Perktold
,
K.
, and
Zehentner
,
H. P.
, 2001, “
Computational Modeling of Macromolecule Transport in the Arterial Wall
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
491
504
.
26.
Prosi
,
M.
,
Zunino
,
P.
,
Perktold
,
K.
, and
Quarteroni
,
A.
, 2005, “
Mathematical and Numerical Models for Transfer of Low-Density Lipoproteins Through the Arterial Wall: A New Methodology for the Model Set Up With Applications to the Study of Disturbed Lumenal Flow
,”
J. Biomech.
0021-9290,
38
, pp.
903
917
.
27.
Yang
,
N.
, and
Vafai
,
K.
, 2006, “
Modeling of Low-Density Lipoprotein (LDL) Transport in the Artery-Effects of Hypertension
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
850
867
.
28.
Sun
,
N.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
, 2007, “
Effects of Transmural Pressure and Wall Shear Stress on LDL Accumulation in the Arterial Wall: A Numerical Study Using a Multi-Layered Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
292
, pp.
H3148
H3157
.
29.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
, pp.
109
159
.
30.
Ogunrinade
,
O.
,
Kameya
,
G. T.
, and
Truskey
,
G. A.
, 2002, “
Effect of Fluid Stress on the Permeability of the Arterial Endothelium
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
430
446
.
31.
Jo
,
H.
,
Dull
,
R. O.
,
Hollis
,
T. M.
, and
Tarbell
,
J. M.
, 1991, “
Endothelial Albumin Permeability is Shear Dependent, Time Dependent, and Reversible
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
260
, pp.
H1992
H1996
.
32.
Rappitsch
,
G.
, and
Perktold
,
K.
, 1996, “
Pulsatile Albumin Transport in Large Arteries: A Numerical Simulation Study
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
511
519
.
33.
Sill
,
H. W.
,
Chang
,
Y. S.
,
Artman
,
J. R.
,
Frangos
,
J. A.
,
Hollis
,
T. M.
, and
Tarbell
,
J. M.
, 1995, “
Shear Stress Increases Hydraulic Conductivity of Cultured Endothelial Monolayers
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
268
, pp.
535
543
.
34.
Sun
,
N.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
, 2007, “
Influence of Pulsatile Flow on LDL Transport in the Arterial Wall
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
1782
1790
.
35.
Kedem
,
O.
, and
Katchalsky
,
A.
, 1958, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes
,”
Biochim. Biophys. Acta
0006-3002,
27
, pp.
229
246
.
36.
Saber
,
N. R.
,
Wood
,
N. B.
,
Gosman
,
A. D.
,
Merrifield
,
R. D.
,
Yang
,
G. Z.
,
Charrier
,
C. L.
,
Gatehouse
,
P. D.
, and
Firmin
,
D. N.
, 2003, “
Progress Towards Patient-Specific Computational Flow Modeling of the Left Heart via Combination of Magnetic Resonance Imaging With Computational Fluid Dynamics.
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
42
52
.
37.
Kudo
,
S.
,
Ikezawa
,
K.
,
Matsumura
,
S.
,
Ikeda
,
M.
,
Oka
,
K.
, and
Tanishita
,
K.
, 1998, “
Effect of Wall Shear Stress on Macromolecule Uptake Into Cultured Endothelial Cells
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
64
, pp.
367
374
.
38.
Womersley
,
J. R.
, 1955, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol. (London)
0022-3751,
127
, pp.
553
563
.
39.
Meyer
,
G.
,
Merval
,
R.
, and
Tedgui
,
A.
, 1996, “
Effects of Pressure-Induced Stretch and Convection on Low-Density Lipoprotein and Albumin Uptake in the Rabbit Aortic Wall
,”
Circ. Res.
0009-7330,
79
, pp.
532
540
.
40.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
Lamack
,
J. A.
,
Li.
X.-M
, and
Friedman
,
M. H.
, 2004, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
, pp.
H1916
H1922
.
You do not currently have access to this content.