An artery ring springs open into a sector after a radial cut. The opening angle characterizes the residual strain in the unloaded state, which is fundamental in understanding stress and strain in the vessel wall. A recent study revealed that the opening angle decreases with time if the artery is cut from the loaded state, while it increases if the cut is made from the no-load state due to viscoelasticity. In both cases, the opening angle approaches the same value in 3h. This implies that the characteristic relaxation time is about 10,000s. Here, the creep function of a generalized Maxwell model (a spring in series with six Voigt bodies) is used to predict the temporal change of opening angle in multiple time scales. It is demonstrated that the theoretical model captures the salient features of the experimental results. The proposed creep function may be extended to study the viscoelastic response of blood vessels under various loading conditions.

1.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
189
192
.
2.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
, 1987, “
Residual Stress and Strain in Aortic Segments
,”
J. Biomech.
0021-9290,
20
, pp.
235
239
.
3.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer
,
New York
.
4.
Rachev
,
A.
, and
Greenwald
,
S. E.
, 2003, “
Residual Strains in Conduit Arteries
,”
J. Biomech.
0021-9290,
36
, pp.
661
670
.
5.
Guo
,
X. M.
,
Lu
,
X.
, and
Kassab
,
G. S.
, 2005, “
Transmural Strain Distribution in the Blood Vessel Wall
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
, pp.
H881
H886
.
6.
Rehal
,
D.
,
Guo
,
X. M.
,
Lu
,
X.
, and
Kassab
,
G. S.
, 2006, “
Duration of No-Load State Affects Opening Angle of Porcine Coronary Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
290
, pp.
H1871
H1878
.
7.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
, 2000, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
15
22
.
8.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
441
463
.
9.
Iatridis
,
J. C.
,
Wu
,
J. R.
,
Yandow
,
J. A.
, and
Langevin
,
H. M.
, 2003, “
Subcutaneous Tissue Mechanical Behavior is Linear and Viscoelastic Under Uniaxial Tension
,”
Connect. Tissue Res.
0300-8207,
44
, pp.
208
217
.
10.
Findley
,
W. N.
,
Lai
,
J. S.
, and
Onaran
,
K.
, 1989,
Creep and Relaxation of Nonlinear Viscoelastic Materials
,
Dover
,
New York
.
11.
Zhang
,
W.
,
Chen
,
H. Y.
, and
Kassab
,
G. S.
, 2007, “
A Rate Insensitive Linear Viscoelastic Model for Soft Tissues
,”
Biomaterials
0142-9612,
28
, pp.
3579
3586
.
12.
Orosz
,
M.
,
Molnarka
,
G.
, and
Monos
,
E.
, 1997, “
Curve Fitting Methods and Mechanical Models for Identification of Viscoelastic Parameters of Vascular Wall—A Comparative Study
,”
Med. Sci. Monit.
1234-1010,
3
, pp.
599
604
.
13.
Zhang
,
W.
, and
Kassab
,
G. S.
, 2007, “
A Bilinear Stress-Strain Relationship for Arteries
,”
Biomaterials
0142-9612,
28
, pp.
1307
1315
.
14.
Zhang
,
W.
,
Wang
,
C.
, and
Kassab
,
G. S.
, 2007, “
The Mathematical Formulation of a Generalized Hooke’s Law for Blood Vessels
,”
Biomaterials
0142-9612,
28
, pp.
3569
3578
.
15.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J. J.
, 1996, “
Theoretical Study of Dynamics of Arterial Wall Remodeling in Response to Changes in Blood Pressure
,”
J. Biomech.
0021-9290,
29
, pp.
635
642
.
16.
Tanaka
,
T. T.
, and
Fung
,
Y. C.
, 1974, “
Elastic and Inelastic Properties of the Canine Aorta and Their Variations Along the Aortic Tree
,”
J. Biomech.
0021-9290,
7
, pp.
357
370
.
17.
Recchia
,
F. A.
,
Byrne
,
B. J.
, and
Kass
,
D. A.
, 1999, “
Sustained Vessel Dilation Induced by Increased Pulsatile Perfusion of Porcine Carotid Arteries In Vitro
,”
Acta Physiol. Scand.
0001-6772,
166
, pp.
15
21
.
18.
Veress
,
A. I.
,
Vince
,
D. G.
,
Anderson
,
P. M.
,
Cornhill
,
J. F.
,
Herderick
,
E. E.
,
Kuban
,
B. D.
,
Greenberg
,
N. L.
, and
Thomas
,
J. D.
, 2000, “
Vascular Mechanics of the Coronary Artery
,”
Z. Kardiol.
0300-5860,
89
, pp.
92
100
.
19.
Silver
,
F. H.
,
Snowhill
,
P. B.
, and
Foran
,
D. J.
, 2003, “
Mechanical Behavior of Vessel Wall: A Comparative Study of Aorta, Vena Cava, and Carotid Artery
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
793
803
.
20.
Berglund
,
J. D.
,
Nerem
,
R. M.
, and
Sambanis
,
A.
, 2005, “
Viscoelastic Testing Methodologies for Tissue Engineered Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1176
1184
.
21.
Wang
,
C.
,
Zhang
,
W.
, and
Kassab
,
G. S.
, 2008, “
The Validation of a Generalized Hooke’s Law for Coronary Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
294
, pp.
H66
H73
.
22.
Lu
,
X.
,
Yang
,
J.
,
Zhao
,
J. B.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2003, “
Shear Modulus of Porcine Coronary Artery: Contributions of Media and Adventitia
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
285
, pp.
H1966
H1975
.
23.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2006, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
291
, pp.
H1200
H1209
.
24.
Armentano
,
R. L.
,
Graf
,
S.
,
Barra
,
J. G.
,
Velikovsky
,
G.
,
Baglivo
,
H.
,
Sanchez
,
R.
,
Simon
,
A.
,
Pichel
,
R. H.
, and
Levenson
,
J.
, 1998, “
Carotid Wall Viscosity Increase is Related to Intima-Media Thickening in Hypertensive Patients
,”
Hypertension
0194-911X,
31
, pp.
534
539
.
25.
Han
,
H. C.
, and
Fung
,
Y. C.
, 1991, “
Species Dependence of the Zero-Stress State of Aorta—Pig Versus Rat
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
446
451
.
26.
Frobert
,
O.
,
Gregersen
,
H.
,
Bjerre
,
J.
,
Bagger
,
J. P.
, and
Kassab
,
G. S.
, 1998, “
Relation Between Zero-Stress State and Branching Order of Porcine Left Coronary Arterial Tree
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
275
, pp.
H2283
H2290
.
27.
Carew
,
E. O.
,
Barber
,
J. E.
, and
Vesely
,
I.
, 2000, “
Role of Preconditioning and Recovery Time in Repeated Testing of Aortic Valve Tissues: Validation Through Quasilinear Viscoelastic Theory
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
1093
1100
.
28.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1989, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
ASME J. Biomech. Eng.
0148-0731,
111
, pp.
325
335
.
29.
Lu
,
X.
,
Zhao
,
J. B.
,
Wang
,
G. R.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2001, “
Remodeling of the Zero-Stress State of Femoral Arteries in Response to Flow Overload
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
280
, pp.
H1547
H1559
.
30.
Valenta
,
J.
,
Svoboda
,
J.
,
Valerianova
,
D.
, and
Vitek
,
K.
, 1999, “
Residual Strain in Human Atherosclerotic Coronary Arteries and Age Related Geometrical Changes
,”
Biomed. Mater. Eng.
0959-2989,
9
, pp.
311
317
.
31.
Vena
,
P.
,
Gastaidi
,
D.
, and
Contro
,
R.
, 2006, “
A Constituent-Based Model for the Nonlinear Viscoelastic Behavior of Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
449
457
.
You do not currently have access to this content.