Hemolysis and thrombosis are among the most detrimental effects associated with mechanical heart valves. The strength and structure of the flows generated by the closure of mechanical heart valves can be correlated with the extent of blood damage. In this in vitro study, a tilting disk mechanical heart valve has been modified to measure the flow created within the valve housing during the closing phase. This is the first study to focus on the region just upstream of the mitral valve occluder during this part of the cardiac cycle, where cavitation is known to occur and blood damage is most severe. Closure of the tilting disk valve was studied in a “single shot” chamber driven by a pneumatic pump. Laser Doppler velocimetry was used to measure all three velocity components over a 30ms period encompassing the initial valve impact and rebound. An acrylic window placed in the housing enabled us to make flow measurements as close as 200μm away from the closed occluder. Velocity profiles reveal the development of an atrial vortex on the major orifice side of the valve shed off the tip of the leaflet. The vortex strength makes this region susceptible to cavitation. Mean and maximum axial velocities as high as 7ms and 20ms were recorded, respectively. At closure, peak wall shear rates of 80,000s1 were calculated close to the valve tip. The region of the flow examined here has been identified as a likely location of hemolysis and thrombosis in tilting disk valves. The results of this first comprehensive study measuring the flow within the housing of a tilting disk valve may be helpful in minimizing the extent of blood damage through the combined efforts of experimental and computational fluid dynamics to improve mechanical heart valve designs.

1.
Chandran
,
K. B.
,
Khalighi
,
B.
,
Chen
,
C. J.
,
Falsetti
,
H. L.
,
Yearwood
,
T. L.
, and
Hiratzka
,
L. F.
, 1983, “
Effect of Valve Orientation on Flow Development Past Aortic Valve Prostheses in a Model Human Aorta
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
85
(
6
), pp.
893
901
.
2.
Gross
,
J. M.
,
Shermer
,
C. D.
, and
Hwang
,
N. H.
, 1988, “
Vortex Shedding in Bileaflet Heart Valve Prostheses
,”
ASAIO Trans.
0889-7190,
34
(
3
), pp.
845
850
.
3.
Hasenkam
,
J. M.
,
Westphal
,
D.
,
Reul
,
H.
,
Gormsen
,
J.
,
Giersiepen
,
M.
,
Stodkilde-Jorgensen
,
H.
, and
Paulsen
,
P. K.
, 1987, “
Three-Dimensional Visualization of Axial Velocity Profiles Downstream of Six Different Mechanical Aortic Valve Prostheses, Measured With a Hot-Film Anemometer in a Steady State Flow Model
,”
J. Biomech.
0021-9290,
20
(
4
), pp.
353
364
.
4.
Yoganathan
,
A. P.
,
Woo
,
Y. R.
,
Williams
,
F. P.
,
Stevenson
,
D. M.
,
Franch
,
R. H.
, and
Harrison
,
E. C.
, 1983, “
In Vitro Fluid Dynamic Characteristics of Ionescu-Shiley and Carpentier-Edwards Tissue Bioprostheses
,”
Artif. Organs
0160-564X,
7
(
4
), pp.
459
469
.
5.
Bluestein
,
D.
,
Einav
,
S.
, and
Hwang
,
N. H.
, 1994, “
A Squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve Prosthesis
,”
J. Biomech.
0021-9290,
27
(
11
), pp.
1369
1378
.
6.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2000, “
Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
431
441
.
7.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2001, “
Integrating Particle Image Velocimetry and Laser Doppler Velocimetry Measurements of the Regurgitant Flow Field Past Mechanical Heart Valves
,”
Artif. Organs
0160-564X,
25
(
2
), pp.
136
145
.
8.
Lee
,
C. S.
,
Chandran
,
K. B.
, and
Chen
,
L. D.
, 1996, “
Cavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
97
105
.
9.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
0160-564X,
27
(
9
), pp.
840
846
.
10.
Manning
,
K. B.
,
Przybysz
,
T. M.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2005, “
Near Field Flow Characteristics of the Bjork-Shiley Monostrut Valve in a Modified Single Shot Valve Chamber
,”
ASAIO J.
1058-2916,
51
(
2
), pp.
133
138
.
11.
Saxena
,
R.
,
Lemmon
,
J.
,
Ellis
,
J.
, and
Yoganathan
,
A.
, 2003, “
An In Vitro Assessment by Means of Laser Doppler Velocimetry of the Medtronic Advantage Bileaflet Mechanical Heart Valve Hinge Flow
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
126
(
1
), pp.
90
98
.
12.
Sneckenberger
,
D. S.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1996, “
Mitral Heart Valve Cavitation in an Artificial Heart Environment
,”
J. Heart Valve Dis.
0966-8519,
5
(
2
), pp.
216
227
.
13.
Ezekowitz
,
M. D.
, 2002, “
Anticoagulation Management of Valve Replacement Patients
,”
J. Heart Valve Dis.
0966-8519,
11
(
1
), pp.
S56
S60
.
14.
Meyer
,
R. S.
,
Deutsch
,
S.
,
Bachmann
,
C. B.
, and
Tarbell
,
J. M.
, 2001, “
Laser Doppler Velocimetry and Flow Visualization Studies in the Regurgitant Leakage Flow Region of Three Mechanical Mitral Valves
,”
Artif. Organs
0160-564X,
25
(
4
), pp.
292
299
.
15.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
, 2000, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
125
134
.
16.
Bachmann
,
C.
,
Kini
,
V.
,
Deutsch
,
S.
,
Fontaine
,
A. A.
, and
Tarbell
,
J. M.
, 2002, “
Mechanisms of Cavitation and the Formation of Stable Bubbles on the Bjork-Shiley Monostrut Prosthetic Heart Valve
,”
J. Heart Valve Dis.
0966-8519,
11
(
1
), pp.
105
113
.
17.
Kafesjian
,
R.
,
Howanec
,
M.
,
Ward
,
G. D.
,
Diep
,
L.
,
Wagstaff
,
L. S.
, and
Rhee
,
R.
, 1994, “
Cavitation Damage of Pyrolytic Carbon in Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
3
(
1
), pp.
S2
S7
.
18.
Lin
,
H. Y.
,
Biancucci
,
B. A.
,
Deutsch
,
S.
,
Fontaine
,
A. A.
, and
Tarbell
,
J. M.
, 2000, “
Observation and Quantification of Gas Bubble Formation on a Mechanical Heart Valve
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
304
309
.
19.
Cheng
,
R.
,
Lai
,
Y. G.
, and
Chandran
,
K. B.
, 2004, “
Three-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics
,”
Ann. Biomed. Eng.
0090-6964,
32
(
11
), pp.
1471
1483
.
20.
Hellums
,
J. D.
, and
Brown
,
C. H.
, 1977, “
Blood Cell Damage by Mechanical Forces
,”
Cardiovascular Flow Dynamics and Measurements
,
N. H. C.
Hwang
and
N. A.
Norman
, eds.,
University Park Press
,
Baltimore
.
21.
Nevaril
,
C.
,
Hellums
,
J.
,
Alfrey
,
C. J.
, and
Lynch
,
E.
, 1969, “
Physical Effects in Red Blood Cell Trauma
,”
AIChE J.
0001-1541,
15
, pp.
707
711
.
22.
Sallam
,
A. M.
, and
Hwang
,
N. H.
, 1984, “
Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
0006-355X,
21
(
6
), pp.
783
797
.
23.
Sutera
,
S. P.
, and
Mehrjardi
,
M. H.
, 1975, “
Deformation and Fragmentations of Human Red Blood Cells in Turbulent Shear Flow
,”
Biophys. J.
0006-3495,
15
(
1
), pp.
1
10
.
24.
Blackshear
,
P. L.
, 1972, “
Mechanical Hemolysis in Flowing Blood
,”
Biomechanics
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
501
528
.
25.
Mohandas
,
N.
,
Hochmuth
,
R. M.
, and
Spaeth
,
E. E.
, 1974, “
Adhesion of Red Cells to Foreign Surfaces in the Presence of Flow
,”
J. Biomed. Mater. Res.
0021-9304,
8
(
2
), pp.
119
136
.
26.
Giddens
,
D. P.
,
Yoganathan
,
A. P.
, and
Schoen
,
F. J.
, 1993, “
Prosthetic Cardiac Valves
,”
Cardiovasc. Pathol.
1054-8807,
2
, pp.
1675
1775
.
27.
National Heart, Lung, and Blood Institute
, 1985, “
Blood Materials Interactions: Guidelines for Blood-Material Interactions
,”
National Heart, Lung and Blood Institute Working Group
, NIH Paper No. 85-2185.
28.
Michelson
,
A. D.
, 2002, “
Platelet Thrombus Formation in Flowing Blood
,”
Platelets
,
Academic
,
New York
, pp.
215
228
.
29.
Chandran
,
K. B.
,
Lee
,
C. S.
, and
Chen
,
L. D.
, 1994, “
Pressure Field in the Vicinity of Mechanical Valve Occluders at the Instant of Valve Closure: Correlation With Cavitation Initiation
,”
J. Heart Valve Dis.
0966-8519,
3
(
1
), pp.
S65
S76
.
30.
Graf
,
T.
,
Reul
,
H.
,
Detlefs
,
C.
,
Wilmes
,
R.
, and
Rau
,
G.
, 1994, “
Causes and Formation of Cavitation in Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
3
(
1
), pp.
S49
S64
.
You do not currently have access to this content.