Hemolysis and thrombosis are among the most detrimental effects associated with mechanical heart valves. The strength and structure of the flows generated by the closure of mechanical heart valves can be correlated with the extent of blood damage. In this in vitro study, a tilting disk mechanical heart valve has been modified to measure the flow created within the valve housing during the closing phase. This is the first study to focus on the region just upstream of the mitral valve occluder during this part of the cardiac cycle, where cavitation is known to occur and blood damage is most severe. Closure of the tilting disk valve was studied in a “single shot” chamber driven by a pneumatic pump. Laser Doppler velocimetry was used to measure all three velocity components over a period encompassing the initial valve impact and rebound. An acrylic window placed in the housing enabled us to make flow measurements as close as away from the closed occluder. Velocity profiles reveal the development of an atrial vortex on the major orifice side of the valve shed off the tip of the leaflet. The vortex strength makes this region susceptible to cavitation. Mean and maximum axial velocities as high as and were recorded, respectively. At closure, peak wall shear rates of were calculated close to the valve tip. The region of the flow examined here has been identified as a likely location of hemolysis and thrombosis in tilting disk valves. The results of this first comprehensive study measuring the flow within the housing of a tilting disk valve may be helpful in minimizing the extent of blood damage through the combined efforts of experimental and computational fluid dynamics to improve mechanical heart valve designs.
Skip Nav Destination
e-mail: kbm10@psu.edu
Article navigation
August 2008
Research Papers
A Detailed Fluid Mechanics Study of Tilting Disk Mechanical Heart Valve Closure and the Implications to Blood Damage
Keefe B. Manning, Ph.D.,
Keefe B. Manning, Ph.D.
Department of Bioengineering,
e-mail: kbm10@psu.edu
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802
Search for other works by this author on:
Luke H. Herbertson,
Luke H. Herbertson
Department of Bioengineering,
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802
Search for other works by this author on:
Arnold A. Fontaine,
Arnold A. Fontaine
Department of Bioengineering,
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802
Search for other works by this author on:
Steven Deutsch
Steven Deutsch
Department of Bioengineering,
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802
Search for other works by this author on:
Keefe B. Manning, Ph.D.
Department of Bioengineering,
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802e-mail: kbm10@psu.edu
Luke H. Herbertson
Department of Bioengineering,
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802
Arnold A. Fontaine
Department of Bioengineering,
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802
Steven Deutsch
Department of Bioengineering,
The Pennsylvania State University
, 205 Hallowell Building, University Park, PA 16802J Biomech Eng. Aug 2008, 130(4): 041001 (8 pages)
Published Online: May 16, 2008
Article history
Received:
April 10, 2007
Revised:
October 2, 2007
Published:
May 16, 2008
Citation
Manning, K. B., Herbertson, L. H., Fontaine, A. A., and Deutsch, S. (May 16, 2008). "A Detailed Fluid Mechanics Study of Tilting Disk Mechanical Heart Valve Closure and the Implications to Blood Damage." ASME. J Biomech Eng. August 2008; 130(4): 041001. https://doi.org/10.1115/1.2927356
Download citation file:
Get Email Alerts
Related Articles
Near Valve Flows and Potential Blood Damage During Closure of a Bileaflet Mechanical Heart Valve
J Biomech Eng (September,2011)
Reduction of Procoagulant Potential of b-Datum Leakage Jet Flow in Bileaflet Mechanical Heart Valves via Application of Vortex Generator Arrays
J Biomech Eng (July,2010)
Modifying a Tilting Disk Mechanical Heart Valve Design to Improve Closing Dynamics
J Biomech Eng (October,2008)
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
J Biomech Eng (April,2000)
Related Proceedings Papers
Related Chapters
Introduction
Mechanical Blood Trauma in Circulatory-Assist Devices
Numerical Simulations of Tip Leakage Vortex Cavitation Flows Around a NACA0009 Hydrofoil
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)