The periodontal ligament (PDL), as other soft biological tissues, shows a strongly non-linear and time-dependent mechanical response and can undergo large strains under physiological loads. Therefore, the characterization of the mechanical behavior of soft tissues entails the definition of constitutive models capable of accounting for geometric and material non-linearity. The microstructural arrangement determines specific anisotropic properties. A hyperelastic anisotropic formulation is adopted as the basis for the development of constitutive models for the PDL and properly arranged for investigating the viscous and damage phenomena as well to interpret significant aspects pertaining to ordinary and degenerative conditions. Visco-hyperelastic models are used to analyze the time-dependent mechanical response, while elasto-damage models account for the stiffness and strength decrease that can develop under significant loading or degenerative conditions. Experimental testing points out that damage response is affected by the strain rate associated with loading, showing a decrease in the damage limits as the strain rate increases. These phenomena can be investigated by means of a model capable of accounting for damage phenomena in relation to viscous effects. The visco-hyperelastic-damage model developed is defined on the basis of a Helmholtz free energy function depending on the strain-damage history. In particular, a specific damage criterion is formulated in order to evaluate the influence of the strain rate on damage. The model can be implemented in a general purpose finite element code. The accuracy of the formulation is evaluated by using results of experimental tests performed on animal model, accounting for different strain rates and for strain states capable of inducing damage phenomena. The comparison shows a good agreement between numerical results and experimental data.

1.
Berkovitz
,
B. K. B.
,
Moxham
,
B. J.
, and
Newmann
,
H. N.
, 1995,
The Periodontal Ligament in Health and Disease
,
Mosby-Wolfe
,
London
.
2.
Hinterkausen
,
M.
,
Bourauel
,
C.
,
Siebers
,
G.
,
Haase
,
A.
,
Drescher
,
D.
, and
Nellen
,
B.
, 1998, “
In Vitro Analysis of the Initial Tooth Mobility in a Novel Optomechanical Set-Up
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
40
49
.
3.
Mühlemann
,
H. R.
, 1955, “
The Role of Interdental Contact Points and of Activation on Tooth Mobility
,”
J. Periodontol.
0022-3492,
25
, pp.
125
137
.
4.
Parfitt
,
G. J.
, 1960, “
Measurement of the Physiological Mobility of Individual Teeth in an Axial Direction
,”
J. Dent. Res.
0022-0345,
39
, pp.
608
618
.
5.
Pini
,
M.
,
Zysset
,
Ph.
,
Botsis
,
J.
, and
Contro
,
R.
, 2004, “
Tensile and Compressive Behaviour of the Bovine Periodontal Ligament
,”
J. Biomech.
0021-9290,
37
, pp.
111
119
.
6.
Ziegler
,
A.
,
Keilig
,
L.
,
Kawarizadeh
,
A.
,
Jäger
,
A.
, and
Bourauel
,
C.
, 2005, “
Numerical Simulation of the Biomechanical Behaviour of Multirooted Teeth
,”
Eur. J. Orthod.
0141-5387,
25
, pp.
333
339
.
7.
Andersen
,
K.
,
Mortensen
,
H. T.
,
Pedersen
,
E. H.
, and
Melsen
,
B.
, 1991, “
Determination of Stress Levels and Profiles in the Periodontal Ligament by Means of an Improved Three-Dimensional Finite Element Model for Various Types of Orthodontic and Natural Force
,”
J. Biomed. Eng.
0141-5425,
13
, pp.
293
303
.
8.
Provatidis
,
C. G.
, 2000, “
A Comparative Fem-Study of Tooth Mobility Using Isotropic and Anisotropic Models of the Periodontal Ligament
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
359
370
.
9.
Pietrzak
,
G.
,
Curnier
,
A.
,
Botsis
,
J.
,
Scherrer
,
S.
,
Wiskott
,
A.
, and
Belser
,
U.
, 2002, “
A Nonlinear Elastic Model of the Periodontal Ligament and Its Numerical Calibration for the Study of Tooth Mobility
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
, pp.
91
100
.
10.
Maurel
,
W.
,
Wu
,
Y.
,
Magnenat Thalmann
,
N.
, and
Thalmann
,
D.
, 1998,
Biomechanical Models for Soft Tissue Simulation
,
Springer
,
Berlin
.
11.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
12.
Natali
,
A. N.
,
Pavan
,
P. G.
, and
Scarpa
,
C.
, 2004, “
Numerical Analysis of Tooth Mobility: Formulation of a Non-Linear Constitutive Law for the Periodontal Ligament
,”
Dent. Mater.
0109-5641,
20
(
7
), pp.
623
629
.
13.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
, 2001, “
A Viscoelastic Model for Fibre-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4379
4403
.
14.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer
,
New York
.
15.
Natali
,
A. N.
,
Pavan
,
P. G.
,
Carniel
,
E. L.
, and
Dorow
,
C.
, 2004, “
Visco-Elastic Response of the Periodontal Ligament: An Experimental-Numerical Analysis
,”
Connect. Tissue Res.
0300-8207,
45
, pp.
222
230
.
16.
Vena
,
P.
,
Gastaldi
,
D.
, and
Contro
,
R.
, 2006, “
A Constituent-Based Model for the Nonlinear Viscoelastic Behavior of Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
449
457
.
17.
Nguyen
,
T. D.
,
Jones
,
R. E.
, and
Boyce
,
B. L.
, 2007, “
Modeling the Anisotropic Finite-Deformation Viscoelastic Behavior of Soft Fiber-Reinforced Composites
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
8366
8389
.
18.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
78
84
.
19.
Canga
,
M. E.
,
Becker
,
E. B.
, and
Ozupek
,
S.
, 2001, “
Constitutive Modelling of Viscoelastic Materials With Damage—Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
2207
2226
.
20.
Dorow
,
C.
,
Krstin
,
N.
, and
Sander
,
F. G.
, 2002, “
Experiments to Determine the Material Properties of the Periodontal Ligament
,”
J. Orofac. Orthop.
1434-5293,
63
, pp.
94
104
.
21.
Schechtman
,
H.
, and
Bader
,
D. L.
, 1997, “
In Vitro Fatigue of Human Tendons
,”
J. Biomech.
0021-9290,
30
, pp.
829
35
.
22.
Schechtman
,
H.
, and
Bader
,
D. L.
, 2001, “
Fatigue Damage of Human Tendons
,”
J. Biomech.
0021-9290,
35
, pp.
347
53
.
23.
Natali
,
A. N.
,
Pavan
,
P. G.
,
Carniel
,
E. L.
,
Lucisano
,
M. E.
, and
Taglialavoro
,
G.
, 2005, “
Anisotropic Elasto-Damage Constitutive Model for the Biomechanical Analysis of Tendons
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
209
214
.
24.
Yamamoto
,
S.
,
Saito
,
A.
,
Kabayama
,
M.
,
Sugimoto
,
S.
,
Nagasaka
,
K.
,
Mizuno
,
K.
, and
Tanaka
,
E.
, 2003, “
Strain-Rate Dependence of Mechanical Failure Properties of Rabbit MCL and ACL
,”
Summer Bioengineering Conference
, Royal Sonesta Resort, Key Biscayne,
FL
, Jun. 25–29.
25.
Yamamoto
,
N.
, and
Hayashi
,
K.
, 1998, “
Mechanical Properties of Rabbit Patellar Tendon at High Strain Rate
,”
Biomed. Mater. Eng.
0959-2989,
8
, pp.
83
90
.
26.
Danto
,
M. I.
, and
Woo
,
S. L.-Y.
, 1993, “
The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates
,”
J. Orthop. Res.
0736-0266,
11
, pp.
58
67
.
27.
Natali
,
A. N.
,
Pavan
,
P. G.
,
Carniel
,
E. L.
, and
Dorow
,
C.
, 2003, “
A Transversally Isotropic Elasto-Damage Constitutive Model for the Periodontal Ligament
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
, pp.
329
336
.
28.
Natali
,
A. N.
,
Pavan
,
P. G.
, and
Carniel
,
E. L.
, 2004, “
Damage Phenomena in Anisotropic Soft Biological Tissues: A Constitutive Formulation
,”
Russian Journal of Biomechanics
,
8
(
3
), pp.
43
60
.
29.
Gei
,
M.
,
Genna
,
F.
, and
Bigoni
,
D.
, 2002, “
An Interface Model for the Periodontal Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
538
546
.
30.
Nishihira
,
M.
,
Yamamoto
,
K.
,
Sato
,
Y.
,
Ishikawa
,
H.
, and
Natali
,
A. N.
, 2003, “
Mechanics of Periodontal Ligament
,” in
Dental Biomechanics
,
A. N.
Natali
, ed.,
Taylor & Francis
,
London
, pp.
20
34
.
31.
Corana
,
A.
,
Marchesi
,
M.
,
Martini
,
C.
, and
Ridella
,
S.
, 1987, “
Minimizing Multimodal Functions of Continuous Variables With the Simulated Annealing Algorithm
,”
ACM Trans. Math. Softw.
0098-3500,
13
(
3
), pp.
262
280
.
32.
Ning
,
X.
,
Zhu
,
A.
,
Lanir
,
Y.
, and
Margulies
,
S. S.
, 2006, “
A Transversely Isotropic Viscoelastic Constitutive Equation for Brainstem Undergoing Finite Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
925
933
.
33.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1968,
Mathematical Foundations of Elasticity
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
34.
McCrum
,
N. G.
,
Buckley
,
C. P.
, and
Bucknall
,
C. B.
, 1997,
Principles of Polymers Engineering
,
Oxford Science
,
Oxford
.
35.
Gurtin
,
M. E.
, 1981,
An Introduction to Continuum Mechanics
,
Academic
,
San Diego
.
36.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics
,
Wiley
,
New York
.
37.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer
,
New York
.
38.
Flory
,
P. J.
, 1961, “
Thermodynamic Relations for High Elastic Materials
,”
Trans. Faraday Soc.
0014-7672,
57
, pp.
829
838
.
39.
Natali
,
A. N.
,
Carniel
,
E. L.
,
Pavan
,
P. G.
,
Dario
,
P.
, and
Izzo
,
I.
, 2006, “
Hyperelastic Models for the Analysis of Soft Tissue Mechanics: Definition of Constitutive Parameters
,”
Proceedings of 2006 IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Pisa, Italy
.
40.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1968,
Mathematical Foundations of Elasticity
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Rabinowitz
,
F. M.
, 1995, “
Algorithm 744: A Stochastic Algorithm for Global Optimization With Constraints
,”
ACM Trans. Math. Softw.
0098-3500,
21
(
2
), pp.
194
213
.
42.
Dorow
,
C.
,
Schneider
,
J.
, and
Sander
,
F. G.
, 2003, “
Finite Element Simulation of In Vivo Tooth Mobility in Comparison With Experimental Results
,”
Journal of Mechanics in Medicine and Biology
,
3
(
1
), pp.
79
94
.
43.
Hinterkausen
,
M.
,
Bourauel
,
C.
,
Siebers
,
G.
,
Haase
,
A.
,
Drescher
,
D.
, and
Nellen
,
B.
, 1998, “
In Vitro Analysis of the Initial Tooth Mobility in a Novel Optomechanical Set-Up
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
40
49
.
44.
Dorow
,
C.
,
Krstin
,
N.
, and
Sander
,
F. G.
, 2003, “
Determination of the Mechanical Properties of the Periodontal Ligament in a Uniaxial Tensional Experiment
,”
J. Orofac. Orthop.
1434-5293,
64
, pp.
100
107
.
45.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
, 1999, “
Quasi-Linear Viscoelasticity of Ankle Ligaments
,”
23rd Annual Meeting of the American Society of Biomechanics
,
Pittsburgh, PA
.
You do not currently have access to this content.