Disorders of the first ray of the foot (defined as the hard and soft tissues of the first metatarsal, the sesamoids, and the phalanges of the great toe) are common, and therapeutic interventions to address these problems range from alterations in footwear to orthopedic surgery. Experimental verification of these procedures is often lacking, and thus, a computational modeling approach could provide a means to explore different interventional strategies. A three-dimensional finite element model of the first ray was developed for this purpose. A hexahedral mesh was constructed from magnetic resonance images of the right foot of a male subject. The soft tissue was assumed to be incompressible and hyperelastic, and the bones were modeled as rigid. Contact with friction between the foot and the floor or footwear was defined, and forces were applied to the base of the first metatarsal. Vertical force was extracted from experimental data, and a posterior force of 0.18 times the vertical force was assumed to represent loading at peak forefoot force in the late-stance phase of walking. The orientation of the model and joint configuration at that instant were obtained by minimizing the difference between model predicted and experimentally measured barefoot plantar pressures. The model were then oriented in a series of postures representative of push-off, and forces and joint moments were decreased to zero simultaneously. The pressure distribution underneath the first ray was obtained for each posture to illustrate changes under three case studies representing hallux limitus, surgical arthrodesis of the first ray, and a footwear intervention. Hallux limitus simulations showed that restriction of metatarsophalangeal joint dorsiflexion was directly related to increase and early occurrence of hallux pressures with severe immobility increasing the hallux pressures by as much as 223%. Modeling arthrodesis illustrated elevated hallux pressures when compared to barefoot and was dependent on fixation angles. One degree change in dorsiflexion and valgus fixation angles introduced approximate changes in peak hallux pressure by 95 and 22 kPa, respectively. Footwear simulations using flat insoles showed that using the given set of materials, reductions of at least 18% and 43% under metatarsal head and hallux, respectively, were possible.

1.
Dananberg
,
H. J.
, 1986, “
Functional Hallux Limitus and Its Relationship to Gait Efficiency
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
76
(
11
), pp.
648
652
.
2.
Coughlin
,
M. J.
, 1984, “
Hallux Valgus: Causes, Evaluation, and Treatment
,”
Postgrad Med.
0032-5481,
75
(
5
), pp.
174
178
.
3.
Shereff
,
M. J.
, and
Baumhauer
,
J. F.
, 1998, “
Hallux Rigidus and Osteoarthrosis of the First Metatarsophalangeal Joint
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
80
(
6
), pp.
898
908
.
4.
Yu
,
G. V.
, and
Gorby
,
P. O.
, 2004, “
First Metatarsophalangeal Joint Arthrodesis
,”
Clin. Podiatr Med. Surg.
0891-8422,
21
, pp.
65
96
.
5.
Raspovic
,
R.
,
Newcombe
,
L.
,
Lloyd
,
J.
, and
Dalton
,
E.
, 2000, “
Effect of Customized Insoles on Vertical Plantar Pressures in Sites of Previous Neuropathic Ulceration in the Diabetic Foot
,”
Diabetic Foot
,
10
, pp.
133
138
.
6.
Jacob
,
H. A.
, 2001, “
Forces Acting in the Forefoot During Normal Gait—An Estimate
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
9
), pp.
783
792
.
7.
Shereff
,
M. J.
,
Bejjani
,
F. J.
, and
Kummer
,
F. J.
, 1986, “
Kinematics of the First Metatarsophalangeal Joint
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
68
(
3
), pp.
392
398
.
8.
Erdemir
,
A.
,
Saucerman
,
J. J.
,
Lemmon
,
D.
,
Loppnow
,
B.
,
Turso
,
B.
,
Ulbrecht
,
J. S.
, and
Cavanagh
,
P.
, “
Local Plantar Pressure Relief in Therapeutic Footwear: Design Guidelines From Finite Element Models
,”
J. Biomech.
0021-9290, 2005, Vol.
38
(
9
), pp.
1798
1806
.
9.
Nakamura
,
S.
,
Crowninshield
,
R. D.
, and
Cooper
,
R. R.
, 1981, “
An Analysis of Soft Tissue Loading in the Foot—A Preliminary Report
,”
Bull. Prosthet. Res.
0007-506X,
10–35
, pp.
27
34
.
10.
Lemmon
,
D.
,
Shiang
,
T. Y.
,
Hashmi
,
A.
,
Ulbrecht
,
J. S.
, and
Cavanagh
,
P. R.
, 1997, “
The Effect of Insoles in Therapeutic Footwear—A Finite Element Approach
,”
J. Biomech.
0021-9290,
30
(
6
), pp.
615
620
.
11.
Gefen
,
A.
, 2003, “
Plantar Soft Tissue Loading Under the Medial Metatarsals in the Standing Diabetic Foot
,”
Med. Eng. Phys.
1350-4533,
25
(
6
), pp.
491
499
.
12.
Chu
,
T. M.
,
Reddy
,
N. P.
, and
Padovan
,
J.
, 1992, “
Three Dimensional Finite Element Stress Analysis of the Polypropylene Ankle-Foot Orthosis
,”
Adv. Bioeng.
0360-9960,
22
, pp.
407
409
.
13.
Cheung
,
J. T.
,
Zhang
,
M.
,
Leung
,
A. K.
, and
Fan
,
Y. B.
, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
0021-9290, 2005,
38
, pp.
1045
1054
.
14.
Chen
,
W. P.
,
Tang
,
F. T.
, and
Ju
,
C. W.
, 2001, “
Stress Distribution of the Foot During Mid-Stance to Push-Off in Barefoot Gait: A 3-D Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
7
), pp.
614
620
.
15.
Gefen
,
A.
,
Megido-Ravid
,
M.
,
Itzchak
,
Y.
, and
Arcan
,
M.
, 2000, “
Biomechanical Analysis of the Three-Dimensional Foot Structure During Gait: A Basic Tool for Clinical Applications
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
630
639
.
16.
Thomas
,
V. J.
,
Patil
,
K. M.
, and
Radhakrishnan
,
S.
, 2004, “
Three-Dimensional Stress Analysis for the Mechanics of Plantar Ulcers in Diabetic Neuropathy
,”
Med. Biol. Eng. Comput.
0140-0118,
42
(
2
), pp.
230
235
.
17.
Chen
,
W. P.
,
Ju
,
C. W.
, and
Tang
,
F. T.
, 2003, “
Effects of Total Contact Insoles on the Plantar Stress Redistribution: A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
6
), pp.
S17
S24
.
18.
Bandak
,
F. A.
,
Tannous
,
R. E.
, and
Toridis
,
T.
, 2001, “
On the Development of an Osseo-Ligamentous Finite Element Model of the Human Ankle Joint
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
1681
1697
.
19.
Camacho
,
D. L.
,
Ledoux
,
W. R.
,
Rohr
,
E. S.
,
Sangeorzan
,
B. J.
, and
Ching
,
R. P.
, 2002, “
A Three-Dimensional, Anatomically Detailed Foot Model: A Foundation for a Finite Element Simulation and Means of Quantifying Foot-Bone Position
,”
J. Rehabil. Res. Dev.
0748-7711,
39
(
3
), pp.
401
410
.
20.
Abaqus Theory Manual
,
Abaqus
,
Providence, RI
, 2003.
21.
Erdemir
,
A.
,
Viveiros
,
M. L.
, and
Cavanagh
,
P. R.
, 2003, “
A Numerical-Experimental Approach for Characterizing Subject Specific Hyperelastic Properties of the Heel Pad
,”
ASME Summer Bioengineering Conference
,
Key Biscayne
,
FL
, June 25–29.
22.
Birke
,
J. A.
,
Cornwall
,
M. A.
, and
Jackson
,
M.
, 1988, “
Relationship Between Hallux Limitus and Ulceration of the Great Toe
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
10
(
5
), pp.
172
176
.
23.
Chao
,
E. Y.
,
Laughman
,
R. K.
, and
Schneider
,
E.
, 1983, “
Normative Data of Knee Joint Motion and Ground Reaction Forces in Adult Level Walking
,”
J. Biomech.
0021-9290,
16
(
3
), pp.
219
233
.
24.
Erdemir
,
A.
,
Petre
,
M.
,
Budhabhatti
,
S.
, and
Cavanagh
,
P. R.
, 2004, “
Optimization of Bone Alignment to Reproduce Plantar Pressures in a Subject-Specific Finite Element Foot Model
,”
28th Annual Meeting of the American Society of Biomechanics
,
Portland, OR
, Sept. 8–11.
25.
Schittkowski
,
K.
, 1985, “
NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems
,”
Ann. Operat. Res.
0254-5330,
5
, pp.
485
500
.
26.
Fauth
,
A. R.
,
Hamel
,
A. J.
, and
Sharkey
,
N. A.
, 2004, “
In Vitro Measurements of First and Second Tarsometatarsal Joint Stiffness
,”
Journal of Applied Biomechanics
,
20
, pp.
14
24
.
27.
Dannels
,
E.
, 1989, “
Neuropathic Foot Ulcer Prevention in Diabetic American Indians With Hallux Limitus
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
79
(
9
), pp.
447
450
.
28.
van Schie
,
C. H.
,
Whalley
,
A.
,
Vileikyte
,
L.
,
Wignall
,
T.
,
Hollis
,
S.
, and
Boulton
,
A. J.
, 2000, “
Efficacy of Injected Liquid Silicone in the Diabetic Foot to Reduce Risk Factors for Ulceration: A Randomized Double-Blind Placebo-Controlled Trial
,”
Diabetes Care
0149-5992,
23
(
5
), pp.
634
638
.
29.
Coughlin
,
M. J.
, 1990, “
Arthrodesis of the First Metatarsophalangeal Joint
,”
Orthop. Rev.
0094-6591,
19
(
2
), pp.
177
186
.
30.
Coughlin
,
M. J.
, 1990, “
Arthrodesis of the First Metatarsophalangeal Joint With MiniFragment Plate Fixation
,”
Orthopedics
0147-7447,
13
(
9
), pp.
1037
1044
.
31.
Southgate
,
J. J.
, and
Urry
,
S. R.
, 1997, “
Hallux Rigidus: The Long-Term Results of Dorsal Wedge Osteotomy and Arthrodesis in Adults
,”
J. Foot Ankle Surg.
1067-2516,
36
(
2
), pp.
136
140
.
32.
DeFrino
,
P. F.
,
Brodsky
,
J. W.
,
Pollo
,
F. E.
,
Crenshaw
,
S. J.
, and
Beischer
,
A. D.
, 2002, “
First Metatarsophalangeal Arthrodesis: A Clinical, Pedobarographic and Gait Analysis Study
,”
Foot Ankle Int.
1071-1007,
23
(
6
), pp.
496
502
.
33.
Buck
,
P.
,
Morrey
,
B. F.
, and
Chao
,
E. Y. S.
, 1987, “
The Optimum Position of Arthrodesis of the Ankle
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
69-A
(
7
), pp.
1052
1062
.
34.
Kuwano
,
T.
,
Nagamine
,
R.
,
Sakaki
,
K.
,
Urabe
,
K.
, and
Iwamoto
,
Y.
, 2002, “
New Radiographic Analysis of Sesamoid Rotation in Hallux Valgus: Comparison With Conventional Evaluation Methods
,”
Foot Ankle Int.
1071-1007,
23
(
9
), pp.
811
817
.
35.
Shrader
,
J. A.
, and
Siegel
,
K. L.
, 2003, “
Nonoperative Management of Functional Hallux Limitus in a Patient With Rheumatoid Arthritis
,”
Phys. Ther.
0031-9023,
83
(
9
), pp.
831
843
.
36.
Maciejewski
,
M. L.
,
Reiber
,
G. E.
,
Smith
,
D. G.
,
Wallace
,
C.
,
Hayes
,
S.
, and
Boyko
,
E. J.
, 2004, “
Effectiveness of Diabetic Therapeutic Footwear in Preventing Reulceration
,”
Diabetes Care
0149-5992,
27
(
7
), pp.
1774
1782
.
37.
Cavanagh
,
P. R.
, 2004, “
Therapeutic Footwear for People With Diabetes
,”
Diabetes/Metab. Rev.
0742-4221,
20
(
1
), pp.
S51
S55
.
38.
Bus
,
S. A.
,
Ulbrecht
,
J. S.
, and
Cavanagh
,
P. R.
, 2004, “
Pressure Relief and Load Redistribution by Custom-Made Insoles in Diabetic Patients With Neuropathy and Foot Deformity
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
6
), pp.
629
638
.
39.
Sanfilippo
,
P. B.
, II
,
Stess
,
R. M.
, and
Moss
,
K. M.
, 1992, “
Dynamic Plantar Pressure Analysis: Comparing Common Insole Materials
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
82
(
10
), pp.
507
513
.
40.
McPoil
,
T. G.
, and
Cornwall
,
M. W.
, 1992, “
Effect of Insole Material on Force and Plantar Pressures During Walking
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
82
(
8
), pp.
412
416
.
41.
Leber
,
C.
, and
Evanski
,
P. M.
, 1986, “
A Comparison of Shoe Insole Materials in Plantar Pressure Relief
,”
Prosthet. Orthot Int.
0309-3646,
10
(
3
), pp.
135
138
.
You do not currently have access to this content.