The pulsatile blood flow and gas transport of oxygen and carbon dioxide through a cylindrical array of microfibers are numerically simulated. Blood is modeled as a homogeneous Casson fluid, and hemoglobin molecules in blood are assumed to be in local equilibrium with oxygen and carbon dioxide. It is shown that flow pulsatility enhances gas transport and the amount of gas exchange is sensitive to the blood flow field across the fibers. The steady Sherwood number dependence on Reynolds number was shown to have a linear relation consistent with experimental findings. For most cases, an enhancement in gas transport is accompanied with an increase in flow resistance. Maximum local shear stress is provided as a possible indicator of thrombosis, and the computed shear stress is shown to be below the threshold value for thrombosis formation for all cases evaluated.

1.
Fazzalari
,
F. L.
,
Bartlett
,
R. H.
,
Bonnell
,
M. R.
, and
Montoya
,
J. P.
, 1994 “
An Intrapleural Lung Prothesis-Rationale, Design, and Testing
,”
Artif. Organs
0160-564X,
18
(
11
), pp.
801
805
.
2.
Lynch
,
W. R.
,
Montoya
,
J. P.
,
Brant
,
D. O.
,
Schreiner
,
R. J.
,
Iannettoni
,
M. D.
, and
Bartlett
,
R. H.
, 2000, “
Hemodynamic Effect of a Low-Resistance Artificial Lung in Series With the Native Lungs of Sheep
,”
Ann. Thorac. Surg.
0003-4975,
69
(
2
), pp.
351
356
.
3.
Zwischenberger
,
J. B.
, and
Alpard
,
S. K.
, 2002, “
Artificial Lungs: A New Inspiration
,”
Perfusion
0267-6591,
17
(
4
), pp.
253
268
.
4.
Ichinose
,
K.
,
Okamoto
,
T.
,
Tanimoto
,
H.
,
Yoshitake
,
A.
,
Tashiro
,
M.
,
Sakanashi
,
Y.
,
Kuwana
,
K.
,
Tahara
,
K.
,
Kamiya
,
M.
, and
Terasaki
,
H.
, 2004, “
Comparison of a New Heparin-Coated Dense Membrane Lung With Nonhaparin-Coated Dense Membrane Lung for Prolonged Extracorporeal Lung Assist in Goats
,”
Artif. Organs
0160-564X,
28
(
11
), pp.
993
1001
.
5.
Haft
,
J. W.
,
Griffith
,
B. P.
,
Hirschl
,
R. B.
, and
Bartlett
,
R. H.
, 2002, “
Results of an Artificial-Lung Survey to Lung Transplant Program Directors
,”
J. Heart Lung Transplant
1053-2498,
21
(
4
), pp.
467
472
.
6.
Hill
,
A. V.
, 1910, “
The Possible Effects of Aggregation of the Molecules of Haemoglobin on its Dissociation Curve
,”
J. Physiol. (London)
0022-3751,
40
,
4
7
.
7.
Spencer
,
J. L.
,
Firouztale
,
E.
, and
Mellins
,
R. B.
, 1979, “
Computational Expressions for Blood Oxygen and Carbon Dioxide Concentrations
,”
Ann. Biomed. Eng.
0090-6964,
7
, pp.
59
66
.
8.
Dash
,
R. K.
, and
Bassingthwaigthte
,
J. B.
, 2004, “
Blood HbO2 and HbCO2 Dissociation Curves at Varied O2, CO2, pH, 2,3-DPG and Temperature Levels
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1676
1693
.
9.
Hill
,
E. P.
,
Power
,
G. G.
, and
Longo
,
L. D.
, 1973, “
Mathematical Simulation of Pulmonary O2 and CO2 Exchange
,”
Am. J. Physiol.
0002-9513,
224
, pp.
904
917
.
10.
Krogh
,
A.
, 1919, “
The Supply of Oxygen to the Tissue and the Regulation of the Capillary Circulation
,”
J. Physiol. (London)
0022-3751,
52
(
6
), pp.
457
474
.
11.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Suresh
,
V.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
, 2006, “
Pulsatile Flow and Mass Transport Past a Circular Cylinder
,”
Phys. Fluids
1070-6631,
18
(
1
), pp.
03102
-1–03102-
15
.
12.
Popel
,
A. S.
, 1989, “
Theory of Oxygen Transport to Tissue
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
3
), pp.
257
321
.
13.
Baker
,
D. A.
,
Holte
,
J. E.
, and
Patankar
,
S. V.
, 1991, “
Computationally Two-Dimensional Finite-Difference Model for Hollow-Fiber Blood-Gas Exchange Device
,”
Med. Biol. Eng. Comput.
0140-0118,
29
, pp.
482
488
.
14.
Wang
,
N. H. L.
, and
Keller
,
N. H.
, 1979, “
Solute Transport Induced by Erythrocyte Motions in Shear-Flow
,”
Trans. Am. Soc. Artif. Intern. Organs
0066-0078,
25
, pp.
14
18
.
15.
Wang
,
N. H. L.
, and
Keller
,
N. H.
, 1985, “
Augmented Transport of Extracellular Solutes in Concentrated Erythrocyte Suspensions in Couette-Flow
,”
J. Colloid Interface Sci.
0021-9797,
103
, pp.
210
225
.
16.
Gage
,
K. L.
,
Gartner
,
M. J.
,
Burgreen
,
G. W.
, and
Wagner
,
W. R.
, 2002, “
Predicting Membrane Oxygenator Pressure Drop Using Computational Fluid Dynamics
,”
Artif. Organs
0160-564X,
26
(
7
), pp.
600
607
.
17.
Dierickx
,
P. W. T.
,
De Wachter
,
D.
, and
Verdonck
,
P. R.
, 2000, “
Blood Flow Around Hollow Fibers
,”
Int. J. Artif. Organs
0391-3988,
23
(
9
), pp.
610
617
.
18.
Dierickx
,
P. W.
,
de Wachter
,
D. S.
, and
Verdonck
,
P. R.
, 2001, “
Two-Dimensional Finite Element Model for Oxygen Transfer in Cross-Flow Hollow Fiber Membrane Artificial Lungs
,”
Int. J. Artif. Organs
0391-3988,
24
(
9
), pp.
628
635
.
19.
Mockros
,
L. F.
, and
Gaylor
,
J. D. S.
, 1975, “
Artificial Lung Design—Tubular Membrane Units
,”
Med. Biol. Eng.
0025-696X,
13
(
2
), pp.
171
181
.
20.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Anderson
,
R. W.
, and
Ronald
,
J. L.
, 1994, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
1058-2916,
40
, pp.
990
996
.
21.
Hewitt
,
T. J.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 1998, “
A Mathematical Model of Gas Exchange in an Intravenous Membrane Oxygenator
,”
Ann. Biomed. Eng.
0090-6964,
26
(
1
), pp.
166
178
.
22.
Dierickx
,
P. W.
,
De Somer
,
F.
,
De Wachter
,
D. S.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
, 2000, “
Hydrodynamic Characteristics of Artificial Lungs
,”
ASAIO J.
1058-2916,
46
(
5
), pp.
532
535
.
23.
Kanamori
,
T.
,
Niwa
,
M.
,
Kawakami
,
H.
,
Mori
,
Y.
,
Nagaoka
,
S.
,
Haraya
,
K.
, and
Shinbo
,
T.
, 2000, “
Estimate of Gas Transfer Rates of Intravascular Membrane Oxygenator
,”
ASAIO J.
1058-2916,
46
, pp.
612
619
.
24.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
,
De Somer
,
F.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
, 2001, “
Mass Transfer Characteristics of Artificial Lungs
,”
ASAIO J.
1058-2916,
47
(
6
), pp.
628
633
.
25.
Pennati
,
G.
,
Fiore
,
G. B.
,
Inzoli
,
F.
,
Mastrantonio
,
F.
,
Galavotti
,
D.
, and
Fini
,
M.
, 1998, “
Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator During Six-Hour in Vitro Perfusion With Steady and Pulsatile Blood Flow
,”
Int. J. Artif. Organs
0391-3988,
21
(
2
), pp.
97
106
.
26.
Fiore
,
G. B.
,
Pennati
,
G.
,
Inzoli
,
F.
,
Mastrantonio
,
F.
, and
Galavotti
,
D.
, 1998, “
Effects of Blood Flow Pulse Frequency on Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator
,”
Int. J. Artif. Organs
0391-3988,
21
(
9
), pp.
535
541
.
27.
Chan
,
K. Y.
,
Fujioka
,
H.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
, 2006, “
Pulsatile Flow and Mass Transport Over an Array of Cylinders: Gas Transfer in a Cardiac-Driven Artificial Lung
,”
J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
85
96
.
28.
Chow
,
T. W.
,
Hellums
,
J. D.
,
Moake
,
J. L.
, and
Kroll
,
M. H.
, 1992, “
Shear Stress-Induced von Willebrand Factor Binding to Platelet Glygoprotein Ib Initiates Calcium Influx Associated With Aggregation
,”
Blood
0006-4971,
80
(
1
), pp.
113
120
.
29.
Kroll
,
M. H.
,
Hellums
,
J. D.
,
McIntire
,
L. V.
,
Schafer
,
A. I.
, and
Moake
,
J. L.
, 1996, “
Platelets and Shear Stress
,”
Blood
0006-4971,
88
(
5
), pp.
1525
1541
.
You do not currently have access to this content.