Background: Patient-specific computational fluid dynamics (CFD) models derived from medical images often require simplifying assumptions to render the simulations conceptually or computationally tractable. In this study, we investigated the sensitivity of image-based CFD models of the carotid bifurcation to assumptions regarding the blood rheology. Method of Approach: CFD simulations of three different patient-specific models were carried out assuming: a reference high-shear Newtonian viscosity, two different non-Newtonian (shear-thinning) rheology models, and Newtonian viscosities based on characteristic shear rates or, equivalently, assumed hematocrits. Sensitivity of wall shear stress (WSS) and oscillatory shear index (OSI) were contextualized with respect to the reproducibility of the reconstructed geometry, and to assumptions regarding the inlet boundary conditions. Results: Sensitivity of WSS to the various rheological assumptions was roughly 1.0dyncm2 or 8%, nearly seven times less than that due to geometric uncertainty (6.7dyncm2 or 47%), and on the order of that due to inlet boundary condition assumptions. Similar trends were observed regarding OSI sensitivity. Rescaling the Newtonian viscosity based on time-averaged inlet shear rate served to approximate reasonably, if overestimate slightly, non-Newtonian behavior. Conclusions: For image-based CFD simulations of the normal carotid bifurcation, the assumption of constant viscosity at a nominal hematocrit is reasonable in light of currently available levels of geometric precision, thus serving to obviate the need to acquire patient-specific rheological data.

1.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
2035
2042
.
2.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
483
497
.
3.
Ballyk
,
P. D.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
, 1994, “
Simulation of Non-Newtonian Blood Flow in an End-to-Side Anastomosis
,”
Biorheology
0006-355X,
31
, pp.
565
586
.
4.
Sharp
,
M. K.
,
Thurston
,
G. B.
, and
Moore
,
J. E.
Jr.
, 1996, “
The Effect of Blood Viscoelasticity on Pulsatile Flow in Stationary and Axially Moving Tubes
,”
Biorheology
0006-355X,
33
, pp.
185
208
.
5.
Gijsen
,
F. J.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
0021-9290,
32
, pp.
601
608
.
6.
Chen
,
J.
, and
Lu
,
X. Y.
, 2006, “
Numerical Investigation of the Non-Newtonian Pulsatile Blood Flow in a Bifurcation Model With a Non-Planar Branch
,”
J. Biomech.
0021-9290,
39
, pp.
818
832
.
7.
Siauw
,
W. L.
,
Ng
,
E. Y.
, and
Mazumdar
,
J.
, 2000, “
Unsteady Stenosis Flow Prediction: A Comparative Study of Non-Newtonian Models With Operator Splitting Scheme
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
265
277
.
8.
Tu
,
C.
, and
Deville
,
M.
, 1996, “
Pulsatile Flow of Non-Newtonian Fluids Through Arterial Stenoses
,”
J. Biomech.
0021-9290,
29
, pp.
899
908
.
9.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
, 1991, “
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
464
475
.
10.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, 1991, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
0006-355X,
28
, pp.
241
262
.
11.
Valencia
,
A.
,
Zarate
,
A.
,
Galvez
,
M.
, and
Badilla
,
L.
, 2006, “
Non-Newonian Blood Flow Dynamics in a Right Internal Carotid Artery With a Saccular Aneurysm
,”
Int. J. Numer. Methods Fluids
0271-2091,
50
, pp.
751
764
.
12.
O’Callaghan
,
S.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2006, “
Numerical Modelling of Newtonian and Non-Newtonian Representation of Blood in a Distal End-to-Side Vascular Bypass Graft Anastomosis
,”
Med. Eng. Phys.
1350-4533,
28
, pp.
70
74
.
13.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Duncan
,
D. D.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1992, “
Effects of Arterial Compliance and Non-Newtonian Rheology on Correlations Between Intimal Thickness and Wall Shear
,”
J. Biomech. Eng.
0148-0731,
114
, pp.
317
320
.
14.
Thomas
,
J. B.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2003, “
Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
132
141
.
15.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is It Reasonable to Assume Fully-Developed Flow?
ASME J. Biomech. Eng.
0148-0731
128
, pp.
371
379
.
16.
Ethier
,
C. R.
,
Steinman
,
D. A.
, and
Ojha
,
M.
, 1999, “
Comparisons Between Computational Hemodynamics, Photochromic Dye Flow Visualization and Magnetic Resonance Velocimetry
,” in
The Haemodynamics of Arterial Organs-Comparisons of Computational Predictions With in vivo and in vitro Data
,
X. Y.
Xu
, and
M. W.
Collins
, eds.,
WIT Press
,
Southampton, UK
, pp.
131
183
.
17.
Minev
,
P. D.
, and
Ethier
,
C. R.
, 1999, “
A CharacteristiC/FInite Element Algorithm for the 3-D Navier-Stokes Equations Using Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
, pp.
39
50
.
18.
Ethier
,
C. R.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R. L.
,
Couch
,
G. G.
, and
Ojha
,
M.
, 2000, “
Steady Flow Separation Patterns in a 45Degree Junction
,”
J. Fluid Mech.
0022-1120,
411
, pp.
1
38
.
19.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
, 2002,
High Order Methods for Incompressible Fluid Flow
,
Cambridge University Press
,
Cambridge
.
20.
Gijsen
,
F. J.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90Degrees Curved Tube
,”
J. Biomech.
0021-9290,
32
, pp.
705
713
.
21.
Seo
,
T.
,
Schachter
,
L. G.
, and
Barakat
,
A. I.
, 2005, “
Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
444
456
.
22.
Walburn
,
F. J.
, and
Schneck
,
D. J.
, 1976, “
A Constitutive Equation for Whole Human Blood
,”
Biorheology
0006-355X,
13
, pp.
201
210
.
23.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
, 2004, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
0021-9290,
37
, pp.
709
720
.
24.
Thurston
,
G. B.
, 1973, “
Frequency and Shear Rate Dependence of Viscoelasticity of Human Blood
,”
Biorheology
0006-355X,
10
, pp.
375
81
.
25.
Guyton
,
A. C.
, 1981,
Medical Physiology
, 6th ed.,
W. B. Saunders Company
,
Philadelphia
.
26.
Box
,
F. M.
,
van der Geest
,
R. J.
,
Rutten
,
M. C.
, and
Reiber
,
J. H.
, 2005, “
The Influence of Flow, Vessel Diameter, and Non-Newtonian Blood Viscosity on the Wall Shear Stress in a Carotid Bifurcation Model for Unsteady Flow
,”
Invest. Radiol.
0020-9996,
40
, pp.
277
294
.
27.
Antiga
,
L.
, and
Steinman
,
D. A.
, 2004, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
0278-0062,
23
, pp.
704
713
.
28.
Cokelet
,
G. R.
, 1980, “
Rheology and Hemodynamics
,”
Annu. Rev. Physiol.
0066-4278,
42
, pp.
311
324
.
29.
Reneman
,
R. S.
,
van Merode
,
T.
,
Hick
,
P.
, and
Hoeks
,
A. P.
, 1985, “
Flow Velocity Patterns in and Distensibility of the Carotid Artery Bulb in Subjects of Various Ages
,”
Circulation
0009-7322,
71
, pp.
500
509
.
30.
Ku
,
D. N.
, and
Giddens
,
D. P.
, 1987, “
Laser Doppler Anemometer Measurements of Pulsatile Flow in a Model Carotid Bifurcation
,”
J. Biomech.
0021-9290,
20
, pp.
407
421
.
You do not currently have access to this content.