Joint injuries during sporting activities might be reduced by understanding the extent of the dynamic motion of joints prone to injury during maneuvers performed in the field. Because instrumented spatial linkages (ISLs) have been widely used to measure joint motion, it would be useful to extend the functionality of an ISL to measure joint motion in a dynamic environment. The objectives of the work reported by this paper were to (i) design and construct an ISL that will measure dynamic joint motion in a field environment, (ii) calibrate the ISL and quantify its static measurement error, (iii) quantify dynamic measurement error due to external acceleration, and (iv) measure ankle joint complex rotation during snowboarding maneuvers performed on a snow slope. An “elbow-type” ISL was designed to measure ankle joint complex rotation throughout its range (±30deg for flexion/extension, ±15deg for internal/external rotation, and ±15deg for inversion/eversion). The ISL was calibrated with a custom six degree-of-freedom calibration device generally useful for calibrating ISLs, and static measurement errors of the ISL also were evaluated. Root-mean-squared errors (RMSEs) were 0.59deg for orientation (1.7% full scale) and 1.00mm for position (1.7% full scale). A custom dynamic fixture allowed external accelerations (5g, 0-50Hz) to be applied to the ISL in each of three linear directions. Maximum measurement deviations due to external acceleration were 0.05deg in orientation and 0.10mm in position, which were negligible in comparison to the static errors. The full functionality of the ISL for measuring joint motion in a field environment was demonstrated by measuring rotations of the ankle joint complex during snowboarding maneuvers performed on a snow slope.

1.
Chao
,
E.
, 1980, “
Justification of Triaxial Goniometer for the Measurement of Joint Rotation
,”
J. Biomech.
0021-9290,
13
, pp.
989
1006
.
2.
Engebretsen
,
L.
,
Lew
,
W. D.
,
Lewis
,
J. L.
, and
Hunter
,
R. E.
, 1989, “
Knee Mechanics After Repair of the Anterior Cruciate Ligament. A Cadaver Study of Ligament Augmentation
,”
Acta Orthop. Scand.
0001-6470,
60
, pp.
703
709
.
3.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
136
144
.
4.
Ishii
,
Y.
,
Terajima
,
K.
,
Koga
,
Y.
,
Takahashi
,
H. E.
,
Bechtold
,
J. E.
, and
Gustilo
,
R. B.
, 1998, “
Gait Analysis after Total Knee Arthroplasty. Comparison of Posterior Cruciate Retention and Substitution
,”
J. Orthop. Sci.
0949-2658,
3
, pp.
310
317
.
5.
Ishii
,
Y.
,
Terajima
,
K.
,
Terashima
,
S.
, and
Matsueda
,
M.
, 2000, “
Joint Proprioception in the Elderly With and Without Hip Fracture
,”
J. Orthop. Trauma
0890-5339,
14
, pp.
542
545
.
6.
Kinzel
,
G. L.
,
Hillberry
,
B. M.
,
Hall
,
A. S. J.
,
Van Sickle
,
D. C.
, and
Harvey
,
W. M.
, 1972, “
Measurement of the Total Motion between Two Body Segments. II. Description of Application
,”
J. Biomech.
0021-9290,
5
, pp.
283
293
.
7.
Kirstukas
,
S. J.
,
Lewis
,
J. L.
, and
Erdman
,
A. G.
, 1992, “
6R Instrumented Spatial Linkages for Anatomical Joint Motion Measurement. Part 1. Design
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
92
100
.
8.
Kovaleski
,
J. E.
,
Gurchiek
,
L. R.
,
Heitman
,
R. J.
,
Hollis
,
J. M.
, and
Pearsall
,
A. W. T.
, 1999, “
Instrumented Measurement of Anteroposterior and Inversion-Eversion Laxity of the Normal Ankle Joint Complex
,”
Foot Ankle Int.
1071-1007,
20
, pp.
808
814
.
9.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
, 1988, “
Description and Error Evaluation of an in Vitro Knee Joint Testing System
,”
ASME J. Biomech. Eng.
0148-0731,
110
, pp.
238
248
.
10.
Seigler
,
S.
,
Lapointe
,
S.
,
Nobilini
,
R.
, and
Berman
,
A. T.
, 1996, “
A Six-Degrees-of-Freedom Instrumented Linkage for Measuring the Flexibility Characteristics of the Ankle Joint Complex
,”
J. Biomech.
0021-9290,
29
, pp.
943
947
.
11.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C. D.
, 1988, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
110
, pp.
364
373
.
12.
Sholukha
,
V.
,
Salvia
,
P.
,
Hilal
,
I.
,
Feipel
,
V.
,
Rooze
,
M.
, and
Jan
,
S. V.
, 2004, “
Calibration and Validation of 6 DOFs Instrumented Spatial Linkage for Biomechanical Applications. A Practical Approach
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
251
260
.
13.
Sommer
,
H. J. I.
, and
Miller
,
N. R.
, 1980, “
A Technique for Kinematic Modeling of Anatomical Joints
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
311
317
.
14.
Townsend
,
M. A.
,
Izak
,
M.
, and
Jackson
,
R. W.
, 1977, “
Total Motion Knee Goniometry
,”
J. Biomech.
0021-9290,
10
, pp.
183
193
.
15.
Estes
,
M.
,
Wang
,
E.
, and
Hull
,
M. L.
, 1999, “
Analysis of Ankle Deflection During a Forward Fall in Snowboarding
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
243
248
.
16.
Hull
,
M. L.
, 1997, “
Analysis of Skiing Accidents Involving Combined Injury to the Medial Collateral and Anterior Cruciate Ligaments
,”
Am. J. Sports Med.
0363-5465,
25
, pp.
35
40
.
17.
Kuo
,
C. Y.
,
Louie
,
J. K.
, and
Mote
,
C. D.
, Jr.
, 1983, “
Field Measurements in Snow Skiing Injury Research
,”
J. Biomech.
0021-9290,
16
, pp.
609
624
.
18.
Louie
,
J. K.
,
Kuo
,
C. Y.
,
Gutierrez
,
M. D.
, and
Mote
,
C. D.
, Jr.
, 1984, “
Surface Emg and Torsion Measurements During Snow Skiing: Laboratory and Field Tests
,”
J. Biomech.
0021-9290,
17
, pp.
713
719
.
19.
Mote
,
C. D.
, Jr.
, and
Louie
,
J. K.
, 1983, “
Accelerations Induced by Body Motions During Snow Skiing
,”
J. Sound Vib.
0022-460X,
88
, pp.
107
115
.
20.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
van den Bogert
,
A. J.
, 2000, “
The Influence of Orthotic Devices and Vastus Medialis Strength and Timing on Patellofemoral Loads During Running
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
15
, pp.
611
618
.
21.
Neptune
,
R. R.
, and
Kautz
,
S. A.
, 2000, “
Knee Joint Loading in Forward Versus Backward Pedaling: Implications for Rehabilitation Strategies
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
15
, pp.
528
535
.
22.
Maxwell
,
S. M.
, and
Hull
,
M. L.
, 1989, “
Measurement of Strength and Loading Variables on the Knee During Alpine Skiing
,”
J. Biomech.
0021-9290,
22
, pp.
609
624
.
23.
Neptune
,
R. R.
, and
Hull
,
M. L.
, 1992, “
A New Mechanical Ski Binding With Release Sensitivity to Torsion and Bending Moments Transmitted by the Leg
,”
Int. J. Sport Biomech.
,
18
, pp.
331
349
.
24.
Quinn
,
T. P.
, and
Mote
,
C. D.
, Jr.
, 1992, “
Prediction of the Loading Along the Leg During Snow Skiing
,”
J. Biomech.
0021-9290,
25
, pp.
609
611
.
25.
Wright
,
I. C.
,
Neptune
,
R. R.
,
Van den Bogert
,
A. J.
, and
Nigg
,
B. M.
, 1998, “
Passive Regulation of Impact Forces in Heel-Toe Running
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
13
, pp.
521
531
.
26.
Kirstukas
,
S. J.
,
Lewis
,
J. L.
, and
Erdman
,
A. G.
, 1992, “
6R Instrumented Spatial Linkages for Anatomical Joint Motion Measurement. 2. Calibration
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
101
110
.
27.
Liu
,
W.
, and
Panjabi
,
M. M.
, 1996, “
On Improving the Accuracy of Instrumented Spatial Linkage System
,”
J. Biomech.
0021-9290,
29
, pp.
1383
1385
.
28.
Sommer
,
H. J. I.
, and
Miller
,
N. R.
, 1981, “
A Technique for the Calibration of Instrumented Spatial Linkages Used for Biomechanical Kinematic Measurements
,”
J. Biomech.
0021-9290,
14
, pp.
91
98
.
29.
Chen
,
J.
,
Siegler
,
S.
, and
Schneck
,
C. D.
, 1988, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joint—Part II: Flexibility Characteristics
,”
ASME J. Biomech. Eng.
0148-0731,
110
, pp.
374
385
.
30.
Paden
,
B.
, and
Sastry
,
S.
, 1988, “
Optimal Kinematic Design of 6R Manipulators
,”
Int. J. Robot. Res.
0278-3649,
7
, pp.
43
61
.
31.
Uicker
,
J. J.
,
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1964, “
An Iterative Method for the Displacement Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
309
314
.
32.
Kinzel
,
G. L.
,
Hall
,
A. S. J.
, and
Hillberry
,
B. M.
, 1972, “
Measurement of the Total Motion Between Two Body Segments. I. Analytical Development
,”
J. Biomech.
0021-9290,
5
, pp.
93
105
.
33.
Coleman
,
T. F.
, and
Li
,
Y.
, 1994, “
On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds
,”
Math. Program.
0025-5610,
67
, pp.
189
224
.
34.
Coleman
,
T. F.
, and
Li
,
Y.
, 1996, “
An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds
,”
SIAM J. Optim.
1052-6234,
6
, pp.
418
445
.
35.
Wang
,
E.
, 2002, personal communication.
36.
Leibner
,
E. D.
,
Simanovsky
,
N.
,
Abu-Sneinah
,
K.
,
Nyska
,
M.
, and
Porat
,
S.
, 2001, “
Fractures of the Lateral Process of the Talus in Children
,”
J. Pediatr. Orthop.
0271-6798,
10
, pp.
68
72
.
37.
Weir
,
E.
, 2001, “
Snowboarding Injuries: Hitting the Slopes
,”
Can. Med. Assoc. J.
0008-4409,
164
, p.
88
.
38.
Bladin
,
C.
,
Giddings
,
P.
, and
Robinson
,
M.
, 1993, “
Australian Snowboard Injury Database Study—A Four Year Perspective
,”
Am. J. Sports Med.
0363-5465,
21
, pp.
701
704
.
39.
Machold
,
W.
,
Kwasny
,
O.
,
Gassler
,
P.
,
Kolonja
,
A.
,
Reddy
,
B.
,
Bauer
,
E.
, and
Lehr
,
S.
, 2000, “
Risk of Injury Through Snowboarding
,”
J. Trauma
,
48
, pp.
1109
1114
.
40.
Pino
,
E. C.
, and
Colville
,
M. R.
, 1989, “
Snowboard Injuries
,”
Am. J. Sports Med.
0363-5465,
17
, pp.
778
781
.
41.
Woolman
,
G.
, 2003, personal communication.
42.
Woolman
,
G.
,
Wilson
,
B. D.
, and
Milburn
,
P.
, 2003, “
3D Ankle Joint Motion During Controlled Snowboard Landings
,”
Abstract Book, 15th International Conference on Ski Trauma and Skiing Safety
, St. Moritz,
International Congress Forum
, St. Moritz, Abstract D1-3.
You do not currently have access to this content.