Total replacement of the glenohumeral joint provides an effective means for treating a variety of pathologies of the shoulder. However, several studies indicate that the procedure has not yet been entirely optimized. Loosening of the glenoid component remains the most likely cause of implant failure, and generally this is believed to stem from either mechanical failure of the fixation in response to high tensile stresses, or through osteolysis of the surrounding bone stock in response to particulate wear debris. Many computational studies have considered the potential for the former, although only few have attempted to tackle the latter. Using finite-element analysis an investigation, taking into account contact pressures as well as glenohumeral kinematics, has thus been conducted, to assess the potential for polyethylene wear within the artificial shoulder. The relationships between three different aspects of glenohumeral design and the potential for wear have been considered, these being conformity, polyethylene thickness, and fixation type. The results of the current study indicate that the use of conforming designs are likely to produce slightly elevated amounts of wear debris particles when compared with less conforming joints, but that the latter would be more likely to cause material failure of the polyethylene. The volume of wear debris predicted was highly influenced by the rate of loading, however qualitatively it was found that wear predictions were not influenced by the use of different polyethylene thicknesses nor fixation type while the depth of wearing was. With the thinnest polyethylene designs (2mm) the maximum depth of the wear scar was seen to be upwards of 20% higher with a metal-backed fixation as opposed to a cemented design. In all-polyethylene designs peak polymethyl methacrylate tensile stresses were seen to reduce with increasing polyethylene thickness. Irrespective of the rate of loading of the shoulder joint, the current study indicates that it is possible to optimize glenoid component design against abrasive wear through the use of high conformity designs, possessing a polyethylene thickness of at least 6mm.

1.
Hopkins
,
A. R.
,
Hansen
,
U. N.
,
Amis
,
A. A.
, and
Emery
,
R.
, 2004, “
The Effects of Glenoid Component Alignment Variations on Cement Mantle Stresses in Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
1058-2746,
13
(
6
), pp.
668
675
.
2.
Murphy
,
L. A.
,
Prendergast
,
P. J.
,
Christie
,
R.
, and
Resch
,
H.
, 2000, “
Finite Element Analysis of an Offset Keeled Glenoid Prosthesis Compared to a Centre Keeled Design
,”
Proceedings of 12th Conference of the European Society of Biomechanics
, Dublin, August 27–30.
3.
Lacroix
,
D.
,
Murphy
,
L. A.
, and
Prendergast
,
P. J.
, 2000, “
Three-Dimensional Finite Element Analysis of Glenoid Replacement Prostheses: A Comparison of Keeled and Pegged Anchorage Systems
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
430
436
.
4.
Gupta
,
S.
,
van der Helm
,
F. C. T.
, and
van Keulen
,
A.
, 2000, “
Stress Analysis of Cemented and Uncemented Glenoid Prostheses
,”
Proceedings of 12th Conference of the European Society of Biomechanics
, Dublin, August 27–30.
5.
Amstutz
,
H. C.
,
Campbell
,
P.
,
Kossovsky
,
N.
, and
Clarke
,
I. C.
, 1992, “
Mechanism and Clinical Significance of Wear Debris-Induced Osteolysis
,”
Clin. Orthop. Relat. Res.
0009-921X,
276
, pp.
7
18
.
6.
Revell
,
P. A.
,
AL-Saffar
,
N.
, and
Kobayashi
,
A.
, 1997, “
Biological Reaction to Debris in Relation to Joint Prostheses
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
, pp.
187
197
.
7.
Ingham
,
E.
, and
Fisher
,
J.
, 2000, “
Biological Reactions to Wear Debris in Total Joint Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
214
, pp.
21
37
.
8.
Blunn
,
G. W.
,
Joshi
,
A. B.
,
Minns
,
R. J.
,
Lidgren
,
L.
,
Lilley
,
P.
,
Ryd
,
L.
,
Engelbrecht
,
E.
, and
Walker
,
P. S.
, 1997, “
Wear in Retrieved Condylar Knee Arthroplasties: A Comparison of Wear in Different Designs of 280 Retrieved Condylar Knee Prostheses
,”
J. Arthroplasty
0883-5403,
12
, pp.
281
290
.
9.
Bowsher
,
J. G.
, and
Shelton
,
J. C.
, 2000, “
The Influence of Activity Level on Wear, Counterface Roughness and Frictional Torque of CoCr–UHMWPE Total Hip Replacements
,”
Proceedings of 12th Conference of the European Society of Biomechanics
, Dublin, August 27–30.
10.
McGloughlin
,
T. M.
, and
Kavanagh
,
A. G.
, 2000, “
Wear of Ultra-High Molecular Weight Polyethylene (UHMWPE) in Total Knee Prostheses: A Review of Key Influences
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
214
, pp.
349
359
.
11.
Learmonth
,
I. D.
, and
Cannigham
,
J. L.
, 1997, “
Factors Contributing to the Wear of Polyethylene in Clinical Practice
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
, pp.
49
57
.
12.
Mabrey
,
J. D.
,
Landry
,
M. E.
,
Huang
,
D.
,
Dean
,
D. D.
,
Blanchard
,
C. R.
,
Boyan
,
B. D.
,
Wirth
,
M. A.
,
Rockwood
,
C. A.
, and
Agrawal
,
C. M.
, 1998, “
Comparison of Polyethylene Wear Particles Isolated From Failed Total Hip and Total Shoulder Arthroplasties
,”
Proceedings of Transactions of the Annual Meeting of the ORS
.
13.
McGee
,
M. A.
,
Howie
,
D. W.
,
Costi
,
K.
,
Haynes
,
D. R.
,
Wildenauer
,
C. J.
,
Pearcy
,
M. J.
, and
McLean
,
J. D.
, 2000, “
Implant Retrieval Studies of the Wear and Loosening of Prosthetic Joints: A Review
,”
Wear
0043-1648,
241
, pp.
158
165
.
14.
Anglin
,
C.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
, 2000, “
Glenohumeral Contact Forces
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
214
, pp.
637
644
.
15.
Gillis
,
A.
, and
Li
,
S.
, 2001, “
Polyethylene Damage of Glenoid Components from Total Shoulder Replacements as Determined from Retrieval Analysis
,”
Proceedings of 47th Meeting of the Orthopaedic Research Society
, San Francisco, CA, February 25–28.
16.
Gunther
,
S. B.
,
Graham
,
J.
,
Norris
,
T. R.
,
Ries
,
M. D.
, and
Pruitt
,
L.
, 2002, “
Retrieved Glenoid Components—A Classification System for Surface Damage Analysis
,”
J. Arthroplasty
0883-5403,
17
(
1
), pp.
95
100
.
17.
Hertel
,
R.
, and
Ballmer
,
F. T.
, 2003, “
Observations on Retrieved Glenoid Components
,”
J. Arthroplasty
0883-5403,
18
(
3
), pp.
361
366
.
18.
Scarlat
,
M. M.
,
Goldberg
,
B. A.
, and
Matsen
,
F. A.
, 2000, “
Physical Changes in Polyethylene Glenoid Components After “In Vivo” Use
,”
J. Shoulder Elbow Surg.
1058-2746,
9
(
6
), p.
550
.
19.
Scarlat
,
M. M.
, and
Matsen
,
F. A.
, 2001, “
Observations on Retreived Polyethylene Glenoid Components
,”
J. Arthroplasty
0883-5403,
16
(
6
), pp.
795
801
.
20.
Wirth
,
M. A.
,
Agrawal
,
C. M.
,
Mabrey
,
J. D.
,
Dean
,
D. D.
,
Blanchard
,
C. R.
,
Miller
,
M. A.
, and
Rockwood
,
C. A.
, 1999, “
Isolation and Characterization of Polyethylene Wear Debris Associated with Osteolysis Following Total Shoulder Arthroplasty
,”
J. Bone Joint Surg. Br.
0301-620X,
81A
(
1
), pp.
29
37
.
21.
Walch
,
G.
,
Edwards
,
T. B.
,
Boulahia
,
A.
,
Boileau
,
P.
,
Molé
,
D.
, and
Adeleine
,
P.
, 2002, “
The Influence of Glenohumeral Prosthetic Mismatch on Glenoid Radiolucent Lines: Results of a Multicenter Study
,”
J. Bone Joint Surg. Br.
0301-620X,
84A
, pp.
2186
2191
.
22.
Terrier
,
A.
,
Büchler
,
P.
, and
Farron
,
A.
, 2006, “
Influence of Glenohumeral Conformity After Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
1058-2746,
15
, pp.
515
520
.
23.
Swieszkowski
,
W.
,
Bednarz
,
P.
, and
Prendergast
,
P. J.
, 2002, “
Contact Stresses in the Glenoid Component in Total Shoulder Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
217
, pp.
49
57
.
24.
Boileau
,
P.
,
Avidor
,
C.
,
Krishnan
,
S. G.
,
Walch
,
G.
,
Kempf
,
J.-F.
, and
Molé
,
D.
, 2002, “
Cemented Polyethylene Versus Uncemented Metal-Backed Glenoid Components in Total Shoulder Arthroplasty: A Prospective, Double-Blind, Randomized Study
,”
J. Shoulder Elbow Surg.
1058-2746,
11
(
4
), pp.
351
359
.
25.
Martin
,
S. A.
,
Zurakowski
,
D.
, and
Thornhill
,
T. S.
, 2002, “
Total Shoulder Arthroplasty With an Uncemented Glenoid Component: 5 to 13-Year Follow-Up
,”
Proceedings of Annual Meeting of the American Academy of Orthopaedic Surgeons
, Rosemont, IL.
26.
Martin
,
S. A.
,
Zurakowski
,
D.
, and
Thornhill
,
T. S.
, 2003, “
Uncemented Glenoid in Total Shoulder: A Five- to Thirteen-Year Follow-up
,”
Proceedings of Annual Meeting of the American Academy of Orthopaedic Surgeons
, New Orleans, LA.
27.
Robinson
,
E. J.
,
Devane
,
P. A.
,
Bourne
,
P. A.
,
Rorabeck
,
C. H.
, and
Hardie
,
R.
, 1995, “
Comparison of Acetabular Polyethylene Wear in Cemented Versus Cementless Hip Arthroplasty Using 3-D Technique
,”
Proceedings of Annual Meeting of the American Academy of Orthopaedic Surgeons
, Chicago, IL.
28.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
Adaptive Finite Element Modelling of Long-Term Polyethylene Wear in Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
14
(
4
), pp.
668
675
.
29.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
3-Dimensional Sliding/Contact Computational Simulation of Total Hip Wear
,”
Clin. Orthop. Relat. Res.
0009-921X,
333
, pp.
41
50
.
30.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1996, “
A Sliding-Distance-Coupled Finite Element Formulation for Polyethylene Wear in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
687
692
.
31.
Maxian
,
T. A.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
,
McKellop
,
H. A.
,
Lu
,
B.
, and
Callaghan
,
J. J.
, 1997, “
Finite Element Analysis of Acetabular Wear—Validation, and Backing and Fixation Effects
,”
Clin. Orthop. Relat. Res.
0009-921X,
344
, pp.
111
117
.
32.
NIH
, 1996, “
An Anatomical Data Set Developed Under a Contract from the NLM by The Departments of Cellular and Structural Biology, and Radiology, University of Colorado School of Medicine
,” http://www.nlm.nih.gov/research/visible/visiblehumanhttp://www.nlm.nih.gov/research/visible/visiblehuman
33.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
, 1988, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
0021-9290,
21
, pp.
155
168
.
34.
Schaffler
,
M. B.
, and
Burr
,
D. B.
, 1988, “
Stiffness of Compact Bone: Effects of Porosity and Density
,”
J. Biomech.
0021-9290,
21
, pp.
13
16
.
35.
Zannoni
,
C.
,
Mantovani
,
R.
, and
Viceconti
,
M.
, 1998, “
Material Properties Assignment to Finite Element Models of Bone Structures: A New Method
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
753
740
.
36.
Cattaneo
,
P. M.
,
Dalstra
,
M.
, and
Frich
,
L. H.
, 2001, “
A Three-Dimensional Finite Element Model from Computed Tomography: A Semi-Automated Method
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
, pp.
203
213
.
37.
Teoh
,
S. H.
,
Chan
,
W. H.
, and
Thampuran
,
R.
, 2002, “
An Elasto-Plastic Finite Element Model for Polyethylene Wear in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
35
, pp.
323
330
.
38.
Stone
,
K. D.
,
Grabowski
,
J. J.
,
Cofield
,
R. H.
,
Morrey
,
B. F.
, and
An
,
K. N.
, 1999, “
Stress Analysis of Glenoid Components in Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
1058-2746,
8
(
2
), pp.
151
158
.
39.
van der Helm
,
F. C. T.
, 1994, “
Analysis of the Kinematic and Dynamic Behaviour of the Shoulder Mechanism
,”
J. Biomech.
0021-9290,
27
(
5
), pp.
527
550
.
40.
Poppen
,
N. K.
, and
Walker
,
P. S.
, 1976, “
Normal and Abnormal Motion of the Shoulder
,”
J. Bone Joint Surg. Br.
0301-620X,
58A
(
2
), pp.
195
201
.
41.
Inman
,
V. T.
,
Saunders
,
J. B. M.
, and
Abbot
,
L. C.
, 1944, “
Observation on the Function of the Shoulder Joint
,”
J. Bone Joint Surg. Br.
0301-620X,
26A
, pp.
195
201
.
42.
Archard
,
J. F.
, 1953, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Physiol.
0021-8987,
24
, pp.
981
988
.
43.
Anglin
,
C.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
, 2000, “
Shoulder Prosthesis Subluxation: Theory and Experiment
,”
J. Shoulder Elbow Surg.
1058-2746,
9
(
2
), pp.
104
114
.
44.
Davis
,
P. R.
, 1997, “
Some Significant Aspects of Normal Upper Limb Functions
,”
Proceedings of IMechE Conference on Joint Replacement in the Upper Limb
, London, UK.
45.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
, 2002, “
Simulation of Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
0021-9290,
35
, pp.
267
275
.
46.
Hopkins
,
A. R.
,
Hansen
,
U. N.
,
Amis
,
A. A.
,
Taylor
,
M.
,
Gronau
,
N.
, and
Anglin
,
C.
, 2006, “
Finite Element Modelling of Glenohumeral Kinematics Following Total Shoulder Arthroplasty
,”
J. Biomech.
0021-9290,
39
, pp.
2476
2483
.
47.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
48.
Friedman
,
R. J.
,
An
,
Y. H.
, and
Draughn
,
R. A.
, 1996, “
Conformity and Contact Pressures in Total Shoulder Arthroplasty
,”
Proceedings of 5th World Biomaterials Conference
, Toronto, ON, May 29–June 2.
49.
Davies
,
J. P.
,
Burke
,
D. W.
,
O'Connor
,
D. O.
, and
Harris
,
W. H.
, 1987, “
Comparison of the Fatigue Characteristics of Centrifuged and Uncentrifuged Simplex-P Bone Cement
,”
J. Orthop. Res.
0736-0266,
5
, pp.
366
371
.
50.
Hopkins
,
A. R.
,
Hansen
,
U. N.
, and
Amis
,
A. A.
, 2005, “
Finite Element Models of Total Shoulder Replacement: Application of Boundary Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
8
(
1
), pp.
39
44
.
51.
Fisher
,
J.
,
McEwen
,
H. M. J.
,
Barnett
,
P. I.
,
Bell
,
C. J.
,
Stewart
,
T. D.
,
Stone
,
M. H.
, and
Ingham
,
E.
, 2001, “
Wear of Polyethylene in Artificial Knee Joints
,”
Current Orthopaedics
,
15
, pp.
399
405
.
52.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw–Hill
, New York.
53.
Anglin
,
C.
, and
Wyss
,
U. P.
, 2000, “
Review of Arm Motion Analyses
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
214
, pp.
541
555
.
54.
Hopkins
,
A. R.
, 2004, “
Total Shoulder Arthroplasty Simulation Using Finite Element Analysis
,” Ph.D. thesis, Imperial College, London, UK.
55.
Robinson
,
E. J.
,
Devane
,
P. A.
,
Bourne
,
P. A.
,
Rorabeck
,
C. H.
, and
Hardie
,
R.
, 1995, “
Effect of Implant Position on Polyethylene Wear in Total Hip Arthroplasty
,”
Proceedings of Annual Meeting of the American Academy of Orthopaedic Surgeons
, Chicago, IL.
56.
Kesteris
,
U.
,
Ilchmann
,
T.
,
Wingstrand
,
H.
, and
Onnerfalt
,
R.
, 1996, “
Polyethylene Wear in Scanhip(R) Arthroplasty with a 22 or 32 mm Head—62 Matched Patients Followed for 7–9 Years
,”
Acta Orthop. Scand.
0001-6470,
67
, pp.
125
127
.
57.
Sychterz
,
C. J.
,
Engh
,
C. A.
,
Shah
,
N.
, and
Engh
,
C. A.
, 1997, “
Radiographic Evaluation of Penetration by the Femoral Head into the Polyethylene Liner Over Time
,”
J. Bone Joint Surg. Br.
0301-620X,
79A
, pp.
1040
1046
.
58.
Kurtz
,
S. M.
,
Ochoa
,
J. A.
,
Hovey
,
C. B.
, and
White
,
C. V.
, 1999, “
Simulation of Initial Frontside and Backside Wear Rates in a Modular Acetabular Component with Multiple Screw Holes
,”
J. Biomech.
0021-9290,
32
, pp.
967
976
.
You do not currently have access to this content.