Background. Temporal variations in shear stress have been suggested to affect endothelial cell biology. To better quantify the range of dynamic shear forces that occur in vivo, the frequency content of shear variations that occur naturally over a cardiac cycle in the iliac arteries was determined. Method of Approach. Computational fluid dynamic calculations were performed in six iliac arteries from three juvenile swine. Fourier analysis of the time-varying shear stress computed at the arterial wall was performed to determine the prevalence of shear forces occurring at higher frequencies in these arteries. Results. While most of each artery experienced shear forces predominantly at the frequency of the heart rate, the frequency spectra at certain regions were dominated by shear forces at higher frequencies. Regions whose frequency spectra were dominated by higher harmonics generally experienced lower mean shear stress. The negative correlation between shear and dominant harmonic was significant (p=0.002). Conclusions. Since lesion development typically occurs in regions experiencing low time-average shear stress, this result suggests that the frequency content of the shear exposure may also be a contributing factor in lesion development. A better understanding of the vascular response to shear components of different frequencies might help rationalize the notion of "disturbed flow" as a hemodynamic entity.

1.
Nichols
,
W. W.
,
O’Rourke
,
M. F.
, and
McDonald
,
D. A.
, 1998,
Mcdonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
. 4th ed., Arnold, London,
Oxford University Press
,
New York
,
564
pp.
2.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
, 2004, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
5
), pp.
H1916
H1922
.
3.
Friedman
,
M. H.
,
Henderson
,
J. M.
,
Aukerman
,
J. A.
, and
Clingan
,
P. A.
, 2000, “
Effect of Periodic Alterations in Shear on Vascular Macromolecular Uptake
,”
Biorheology
0006-355X,
37
(
4
), pp.
265
277
.
4.
Ferrandez
,
A.
,
David
,
T.
,
Bamford
,
J.
,
Scott
,
J.
, and
Guthrie
,
A.
, 2000, “
Computational Models of Blood Flow in the Circle of Willis
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
(
1
), pp.
1
26
.
5.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
(
46
), pp.
109
159
.
6.
Blackman
,
B. R.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
, 2002, “
A New in Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
397
407
.
7.
Malek
,
A. M.
,
Izumo
,
S.
, and
Alper
,
S. L.
, 1999, “
Modulation by Pathophysiological Stimuli of the Shear Stress-Induced up-Regulation of Endothelial Nitric Oxide Synthase Expression in Endothelial Cells
,”
Neurosurgery
0148-396X,
45
(
2
), pp.
334
345
.
8.
Mattart
,
M.
,
Mazzolai
,
L.
,
Chambaz
,
C.
,
Hayoz
,
D.
,
Brunner
,
H. R.
, and
Silacci
,
P.
, 2003, “
Et-1 and Nos Iii Gene Expression Regulation by Plaque-Free and Plaque-Prone Hemodynamic Conditions
,”
Biorheology
0006-355X,
40
(
1–3
), pp.
289
297
.
9.
Casey
,
P. J.
,
Dattilo
,
J. B.
,
Dai
,
G.
,
Albert
,
J. A.
,
Tsukurov
,
O. I.
,
Orkin
,
R. W.
,
Gertler
,
J. P.
, and
Abbott
,
W. M.
, 2001, “
The Effect of Combined Arterial Hemodynamics on Saphenous Venous Endothelial Nitric Oxide Production
,”
J. Vasc. Surg.
0741-5214,
33
(
6
), pp.
1199
1205
.
10.
Helmlinger
,
G.
,
Berk
,
B. C.
, and
Nerem
,
R. M.
, 1996, “
Pulsatile and Steady Flow-Induced Calcium Oscillations in Single Cultured Endothelial Cells
,”
J. Vasc. Res.
1018-1172,
33
(
5
), pp.
360
369
.
11.
Qiu
,
W. P.
,
Hu
,
Q.
,
Paolocci
,
N.
,
Ziegelstein
,
R. C.
, and
Kass
,
D. A.
, 2003, “
Differential Effects of Pulsatile Versus Steady Flow on Coronary Endothelial Membrane Potential
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
285
(
1
), pp.
H341
H346
.
12.
Silacci
,
P.
,
Desgeorges
,
A.
,
Mazzolai
,
L.
,
Chambaz
,
C.
, and
Hayoz
,
D.
, 2001, “
Flow Pulsatility is a Critical Determinant of Oxidative Stress in Endothelial Cells
,”
Hypertension
0194-911X,
38
(
5
), pp.
1162
1166
.
13.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
, 1998, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
(
5
), pp.
686
692
.
14.
Hwang
,
J.
,
Saha
,
A.
,
Boo
,
Y. C.
,
Sorescu
,
G. P.
,
McNally
,
J. S.
,
Holland
,
S. M.
,
Dikalov
,
S.
,
Giddens
,
D. P.
,
Griendling
,
K. K.
,
Harrison
,
D. G.
, and
Jo
,
H.
, 2003, “
Oscillatory Shear Stress Stimulates Endothelial Production of O2- From P47phox-Dependent Nad(P)H Oxidases, Leading to Monocyte Adhesion
,”
J. Biol. Chem.
0021-9258,
278
(
47
), pp.
47291
47298
.
15.
Frangos
,
J. A.
,
Eskin
,
S. G.
,
McIntire
,
L. V.
, and
Ives
,
C. L.
, 1985, “
Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells
,”
Science
0036-8075,.
227
(
4693
), pp.
1477
1479
.
16.
Dai
,
G.
,
Kaazempur-Mofrad
,
M. R.
,
Natarajan
,
S.
,
Zhang
,
Y.
,
Vaughn
,
S.
,
Blackman
,
B. R.
,
Kamm
,
R. D.
,
Garcia-Cardena
,
G.
, and
Gimbrone
,
M. A.
, Jr.
, 2004, “
Distinct Endothelial Phenotypes Evoked by Arterial Waveforms Derived From Atherosclerosis-Susceptible and -Resistant Regions of Human Vasculature
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
41
), pp.
14871
14876
.
17.
Passerini
,
A. G.
,
Polacek
,
D. C.
,
Shi
,
C.
,
Francesco
,
N. M.
,
Manduchi
,
E.
,
Grant
,
G. R.
,
Pritchard
,
W. F.
,
Powell
,
S.
,
Chang
,
G. Y.
,
Stoeckert
,
C. J.
, Jr.
, and
Davies
,
P. F.
, 2004, “
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
8
), pp.
2482
2487
.
18.
DeBakey
,
M. E.
,
Lawrie
,
G. M.
, and
Glaeser
,
D. H.
, 1985, “
Patterns of Atherosclerosis and Their Surgical Significance
,”
Ann. Surg.
0003-4932,
201
(
2
), pp.
115
131
.
You do not currently have access to this content.