The sensitivity of vertebral body strength to the distribution of axial forces along the endplate has not been comprehensively evaluated. Using quantitative computed tomography-based finite element models of 13 vertebral bodies, an optimization analysis was performed to determine the endplate force distributions that minimized (lower bound) and maximized (upper bound) vertebral strength for a given set of externally applied axial compressive loads. Vertebral strength was also evaluated for three generic boundary conditions: uniform displacement, uniform force, and a nonuniform force distribution in which the interior of the endplate was loaded with a force that was 1.5 times greater than the periphery. Our results showed that the relative difference between the upper and lower bounds on vertebral strength was 14.2±7.0%(mean±SD). While there was a weak trend for the magnitude of the strength bounds to be inversely proportional to bone mineral density (R2=0.32, p=0.02), both upper and lower bound vertebral strength measures were well predicted by the strength response under uniform displacement loading conditions (R2=0.91 and R2=0.99, respectively). All three generic boundary conditions resulted in vertebral strength values that were statistically indistinguishable from the loading condition that resulted in an upper bound on strength. The results of this study indicate that the uncertainty in strength arising from the unknown condition of the disc is dependent on the condition of the bone (whether it is osteoporotic or normal). Although bone mineral density is not a good predictor of strength sensitivity, vertebral strength under generic boundary conditions, i.e., uniform displacement or force, was strongly correlated with the relative magnitude of the strength bounds. Thus, explicit disc modeling may not be necessary.

1.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Models Predict in vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
, pp.
744
750
.
2.
Faulkner
,
K. G.
,
Cann
,
C. E.
, and
Hasegawa
,
B. H.
, 1991, “
Effect of Bone Distribution on Vertebral Strength: Assessment With Patient-Specific Nonlinear Finite Element Analysis
,”
Radiology
0033-8419,
179
, pp.
669
674
.
3.
Nachemson
,
A.
, 1965, “
The Load on Lumbar Discs in Different Positions of the Body
,”
Clin. Orthop. Relat. Res.
0009-921X,
45
, pp.
107
122
.
4.
Berkson
,
M. H.
,
Nachemson
,
A. L.
, and
Schultz
,
A. B.
, 1979, “
Mechanical Properties of Human Lumbar Spine Motion Segments—Part II: Responses in Compression and Shear; Influence of Gross Morphology
,”
ASME J. Biomech. Eng.
0148-0731,
101
, pp.
53
57
.
5.
Nachemson
,
A. L.
, 1981, “
Disc Pressure Measurements
,”
Spine
0362-2436,
6
, pp.
93
97
.
6.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
, 1999, “
New in vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
0362-2436,
24
, pp.
755
762
.
7.
Rohlmann
,
A.
,
Claes
,
L. E.
,
Bergmann
,
G.
,
Graichen
,
F.
,
Neef
,
P.
, and
Wilke
,
H. J.
, 2001, “
Comparison of Intradiscal Pressures and Spinal Fixator Loads for Different Body Positions and Exercises
,”
Ergonomics
0014-0139,
44
, pp.
781
794
.
8.
Hooper
,
D. M.
,
Goel
,
V. K.
,
Aleksiev
,
A.
,
Spratt
,
K.
,
Bolte
,
K. M.
, and
Pope
,
M.
, 1998, “
Three Dimensional Moments in the Lumbar Spine During Asymmetric Lifting
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
, pp.
386
393
.
9.
Mannion
,
A. F.
,
Adams
,
M. A.
, and
Dolan
,
P.
, 2000, “
Sudden and Unexpected Loading Generates High Forces on the Lumbar Spine
,”
Spine
0362-2436,
25
, pp.
842
852
.
10.
Sato
,
K.
,
Kikuchi
,
S.
, and
Yonezawa
,
T.
, 1999, “
In vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems
,”
Spine
0362-2436,
24
, pp.
2468
2474
.
11.
Pollintine
,
P.
,
Dolan
,
P.
,
Tobias
,
J. H.
, and
Adams
,
M. A.
, 2004, “
Intervertebral Disc Degeneration can Lead to ‘Stress-Shielding’ of the Anterior Vertebral Body—A Cause of Osteoporotic Vertebral Fracture?
,”
Spine
0362-2436,
29
, pp.
774
782
.
12.
Adams
,
M. A.
,
McNally
,
D. S.
, and
Dolan
,
P.
, 1996, “
‘Stress’ Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration
,”
J. Bone Joint Surg. Br.
0301-620X,
78
, pp.
965
972
.
13.
McNally
,
D. S.
, and
Adams
,
M. A.
, 1992, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine
0362-2436,
17
, pp.
66
73
.
14.
Silva
,
M. J.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
, 1997, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
0362-2436,
22
, pp.
140
150
.
15.
Crawford
,
R. P.
, and
Keaveny
,
T. M.
, 2004, “
Relationship Between Axial and Bending Behaviors of the Human Thoracolumbar Vertebra
,”
Spine
0362-2436,
29
, pp.
2248
2255
.
16.
Homminga
,
J.
,
Van-Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
, 2004, “
The Osteoporotic Vertebral Structure is Well Adapted to the Loads of Daily Life, But Not to Infrequent ‘Error’ Loads
,”
Bone (N.Y.)
8756-3282,
34
, pp.
510
516
.
17.
Polikeit
,
A.
,
Nolte
,
L. P.
, and
Ferguson
,
S. J.
, 2004, “
Simulated Influence of Osteoporosis and Disc Degeneration on the Load Transfer in a Lumbar Functional Spinal Unit
,”
J. Biomech.
0021-9290,
37
, pp.
1061
1069
.
18.
Homminga
,
J.
,
Weinans
,
H.
,
Gowin
,
W.
,
Felsenberg
,
D.
, and
Huiskes
,
R.
, 2001, “
Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture but not the Vertebral Load Distribution
,”
Spine
0362-2436,
26
, pp.
1555
1561
.
19.
Cann
,
C. E.
,
Genant
,
H. K.
,
Kolb
,
F. O.
, and
Ettinger
,
B.
, 1985, “
Quantitative Computed Tomography for Prediction of Vertebral Fracture Risk
,”
Bone (N.Y.)
8756-3282,
6
, pp.
1
7
.
20.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
434
438
.
21.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
0021-9290,
34
, pp.
569
577
.
22.
Ulrich
,
D.
,
Van Rietbergen
,
B.
,
Laib
,
A.
, and
Rueegsegger
,
P.
, 1999, “
The Ability of Three-Dimensional Structural Indices to Reflect Mechanical Aspects of Trabecular Bone
,”
Bone (N.Y.)
8756-3282,
25
, pp.
55
60
.
23.
Bayraktar
,
H. H.
,
Gupta
,
A.
,
Kwon
,
R. Y.
,
Papadopoulos
,
P.
, and
Keaveny
,
T. M.
, 2004, “
The Modified Super-Ellipsoid Yield Criterion for Human Trabecular Bone
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
677
684
.
24.
Kopperdahl
,
D. L.
, and
Keaveny
,
T. M.
, 1998, “
Yield Strain Behavior of Trabecular Bone
,”
J. Biomech.
0021-9290,
31
, pp.
601
608
.
25.
Liebschner
,
M. A.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
0362-2436,
28
, pp.
559
565
.
26.
Crawford
,
R. P.
,
Brouwers
,
J. E. M.
, and
Keaveny
,
T. M.
, 2004, “
Accurate Prediction of Vertebral Strength Using Voxel-Based Non-linear Finite Element Models
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
29
, p.
1123
.
27.
van Dieen
,
J. H.
,
Kingma
,
I.
,
Meijer
,
R.
,
Hansel
,
L.
, and
Huiskes
,
R.
, 2001, “
Stress Distribution Changes in Bovine Vertebrae Just Below the Endplate After Sustained Loading
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
, Suppl.1, pp.
S135
142
.
28.
Fischer
,
K. J.
,
Jacobs
,
C. R.
, and
Carter
,
D. R.
, 1995, “
Computational Method for Determination of Bone and Joint Loads Using Bone-Density Distributions
,”
J. Biomech.
0021-9290,
28
, pp.
1127
1135
.
29.
Fischer
,
K. J.
,
Jacobs
,
C. R.
,
Levenston
,
M. E.
, and
Carter
,
D. R.
, 1996, “
Different Loads can Produce Similar Bone Density Distributions
,”
Bone
,
19
, pp.
127
135
.
30.
Zohdi
,
T. I.
, 2003, “
Genetic Design of Solids Possessing a Random-Particulate Microstructure
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
361
, pp.
1021
1043
.
31.
Zohdi
,
T. I.
, 2003, “
Constrained Inverse Formulations in Random Material Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
28–30
, pp.
3179
3194
.
32.
Eastell
,
R.
,
Cedel
,
S. L.
,
Wahner
,
H. W.
,
Riggs
,
B. L.
, and
Melton
,
L. J.
, 1991, “
Classification of Vertebral Fractures
,”
J. Bone Miner. Res.
0884-0431,
6
, pp.
207
215
.
33.
Melton
,
L. J.
,
Atkinson
,
E. J.
,
O’Fallon
,
W. M.
,
Wahner
,
H. W.
, and
Riggs
,
B. L.
, 1993, “
Long-Term Fracture Prediction by Bone Mineral Assessed at Different Skeletal Sites
,”
J. Bone Miner. Res.
0884-0431,
8
, pp.
1227
1233
.
34.
Granhed
,
H.
,
Jonson
,
R.
, and
Hansson
,
T.
, 1989, “
Mineral-Content and Strength of Lumbar Vertebrae—A Cadaver Study
,”
Acta Orthop. Scand.
0001-6470,
60
, pp.
105
109
.
35.
Whealan
,
K. M.
,
Kwak
,
S. D.
,
Tedrow
,
J. R.
,
Inoue
,
K.
, and
Snyder
,
B. D.
, 2000, “
Noninvasive Imaging Predicts Failure Load of the Spine With Simulated Osteolytic Defects
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
82
, pp.
1240
1251
.
36.
Eswaran
,
S. K.
,
Gupta
,
A.
,
Adams
,
M. F.
, and
Keaveny
,
T. M.
, 2005, “
Role of Cortical Shell in Vertebral Strength Assessment
,”
American Society for Bone and Mineral Research
, Nashville, TN.
37.
Keller
,
T. S.
,
Hansson
,
T. H.
,
Abram
,
A. C.
,
Spengler
,
D. M.
, and
Panjabi
,
M. M.
, 1989, “
Regional Variations in the Compressive Properties of Lumbar Vertebral Trabeculae. Effects of Disc Degeneration
,”
Spine
0362-2436,
14
, pp.
1012
1019
.
38.
Cody
,
D. D.
,
Goldstein
,
S. A.
,
Flynn
,
M. J.
, and
Brown
,
E. B.
, 1991, “
Correlations Between Vertebral Regional Bone Mineral Density (rBMD) and Whole Bone Fracture Load
,”
Spine
0362-2436,
16
, pp.
146
154
.
39.
Cody
,
D. D.
,
Flynn
,
M. J.
, and
Vickers
,
D. S.
, 1989, “
A Technique for Measuring Regional Bone Mineral Density in Human Lumbar Vertebral Bodies
,”
Med. Phys.
0094-2405,
16
, pp.
766
772
.
40.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
, and
Kopperdahl
,
D. L.
, 1999, “
Mechanical Behavior of Human Trabecular Bone After Overloading
,”
J. Orthop. Res.
0736-0266,
17
, pp.
346
353
.
You do not currently have access to this content.