Motivated by the physiological problem of pulmonary airway reopening, we study the steady propagation of an air finger into a buckled elastic tube, initially filled with viscous fluid. The system is modeled using geometrically non-linear, Kirchhoff-Love shell theory, coupled to the free-surface Navier-Stokes equations. The resulting three-dimensional, fluid-structure-interaction problem is solved numerically by a fully coupled finite element method. Our study focuses on the effects of fluid inertia, which has been neglected in most previous studies. The importance of inertial forces is characterized by the ratio of the Reynolds and capillary numbers, ReCa, a material parameter. Fluid inertia has a significant effect on the system’s behavior, even at relatively small values of ReCa. In particular, compared to the case of zero Reynolds number, fluid inertia causes a significant increase in the pressure required to drive the air finger at a given speed.

1.
Pride
,
N. B.
, and
Macklem
,
P. T.
, 1986, in
Handbook of Physiology. Section 3: The Respiratory System
,
American Physiological Society
, 3, Part,
2
, pp.
659
692
.
2.
Hughes
,
J. M. B.
,
Rosenzweig
,
D. Y.
, and
Kivitz
,
P. B.
, 1970, “
Site of Airway Closure in Excised Dog Lungs: Histologic Demonstration
,”
J. Appl. Physiol.
0021-8987,
29
, pp.
340
344
.
3.
Macklem
,
P. T.
,
Proctor
,
D. F.
, and
Hogg
,
J. C.
, 1970, “
The Stability of the Peripheral Airways
,”
Respir. Physiol.
0034-5687,
8
, pp.
191
203
.
4.
Halpern
,
D.
, and
Grotberg
,
J. B.
, 1992, “
Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes
,”
J. Fluid Mech.
0022-1120,
244
, pp.
615
632
.
5.
Heil
,
M.
, and
White
,
J. P.
, 2002, “
Airway Closure: Surface-Tension-Driven Non-Axisymmetric Instabilities of Liquid-Lined Elastic Rings
,”
J. Fluid Mech.
0022-1120,
462
, pp.
79
109
.
6.
White
,
J. P.
, and
Heil
,
M.
, 2005, “
Three-Dimensional Instabilities of Liquid-Lined Elastic Tubes: A Thin-Film, Fluid-Structure Interaction Model
,”
Phys. Fluids
1070-6631,
17
, p.
031506
.
7.
Hazel
,
A. L.
, and
Heil
,
M.
, 2005, “
Surface-Tension-Induced Buckling of Liquid-Lined Elastic Tubes: A Model of Pulmonary Airway Closure
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
, pp.
1847
1868
.
8.
Gaver
,
D. P.
III,
Samsel
,
R. W.
, and
Solway
,
J.
, 1990, “
Effects of Surface Tension and Viscosity on Airway Reopening
,”
J. Appl. Physiol.
8750-7587,
369
, pp.
74
85
.
9.
Gaver
,
D. P.
III,
Halpern
,
D.
,
Jensen
,
O. E.
, and
Grotberg
,
J. B.
, 1996, “
The Steady Motion of a Semi-Infinite Bubble Through a Flexible Walled Channel
,”
J. Fluid Mech.
0022-1120,
319
, pp.
25
56
.
10.
Hazel
,
A. L.
, and
Heil
,
M.
, 2003, “
Three-Dimensional Airway Reopening: The Steady Propagation of a Semi-Infinite Bubble Into a Buckled Elastic Tube
,”
J. Fluid Mech.
0022-1120,
478
, pp.
47
70
.
11.
Halpern
,
D.
,
Naire
,
S.
,
Jensen
,
O. E.
, and
Gaver
,
D. P.
, 2005, “
Unsteady Bubble Propagation in a Flexible-Walled Channel: Predictions of a Viscous Stick-Slip Instability
,”
J. Fluid Mech.
0022-1120,
528
, pp.
53
86
.
12.
Yap
,
D. Y. K.
, and
Gaver
,
D. P.
III, 1998, “
The Influence of Surfactant on Two-Phase Flow in a Flexible-Walled Channel Under Bulk Equilibrium Conditions
,”
Phys. Fluids
1070-6631,
10
, pp.
1846
1863
.
13.
Naire
,
S.
, and
Jensen
,
O. E.
, 2005, “
Epithelial Cell Deformation During Surfactant-Mediated Airway Reopening: A Theoretical Model
,”
J. Appl. Physiol.
8750-7587,
99
, pp.
458
471
.
14.
Horsburgh
,
M. K.
, 2000, “
Bubble Propagation in Flexible and Permeable Channels
,” PhD thesis, Cambridge University, Cambridge.
15.
Jensen
,
O. E.
,
Horsburgh
,
M. K.
,
Halpern
,
D.
, and
Gaver
,
D. P.
III, 2002, “
The Steady Propagation of a Bubble in a Flexible-Walled Channel: Asymptotic and Computational Models
,”
Phys. Fluids
1070-6631,
14
, pp.
443
457
.
16.
Heil
,
M.
, 2000, “
Finite Reynolds Number Effects in the Propagation of an Air Finger Into a Liquid-Filled Flexible-Walled Tube
,”
J. Fluid Mech.
0022-1120,
424
, pp.
21
44
.
17.
Taylor
,
C.
, and
Hood
,
P.
, 1973, “
A Numerical Solution of the Navier-Stokes Equations Using the Finite Element Technique
,”
Comput. Fluids
0045-7930,
1
, pp.
73
100
.
18.
Bogner
,
F. K.
,
Fox
,
R. L.
, and
Schmit
,
L. A.
, 1967, “
A Cylindrical Shell Discrete Element
,”
AIAA J.
0001-1452
5
, pp.
745
750
.
19.
Kistler
,
S. F.
, and
Scriven
,
L. E.
, 1983, “
Coating Flows
,” in
Computational Analysis of Polymer Processing
,
J. R. A.
Pearson
and
S. M.
Richardson
, eds.,
Applied Science
, London.
20.
Duff
,
I. S.
, and
Scott
,
J. A.
, 1996, “
The Design of a New Frontal Code for Solving Sparse, Unsymmetric Linear Systems
,”
ACM Trans. Math. Softw.
0098-3500,
22
, pp.
30
45
.
21.
Hazel
,
A. L.
, and
Heil
,
M.
, 2002, “
The Steady Propagation of a Semi-Infinite Bubble Into a Tube of Elliptical or Rectangular Cross Section
,”
J. Fluid Mech.
0022-1120,
479
, pp.
91
114
.
22.
Heil
,
M.
, 2001, “
The Bretherton Problem in Elastic-Walled Channels: Finite Reynolds Number Effects
,” in
IUTAM Symposium on Free Surface Flows
,
Kluwer
, Dordrecht, Netherlands, pp.
113
120
.
23.
Heil
,
M.
, and
Jensen
,
O. E.
, 2003, “
Flows in Deformable Tubes and Channels—Theoretical Models and Biological Applications
,” in
Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries
,
T. J.
Pedley
and
P. W.
Carpenter
, eds.,
Kluwer
, Dordrecht, Netherlands, pp.
15
50
.
You do not currently have access to this content.