Clinical imaging methods are highly effective in the diagnosis of vascular pathologies, but they do not currently provide enough detail to shed light on the cause or progression of such diseases, and would be hard pressed to foresee the outcome of surgical interventions. Greater detail of and prediction capabilities for vascular hemodynamics and arterial mechanics are obtained here through the coupling of clinical imaging methods with computational techniques. Three-dimensional, patient-specific geometric reconstructions of the pediatric proximal pulmonary vasculature were obtained from x-ray angiogram images and meshed for use with commercial computational software. Two such models from hypertensive patients, one with multiple septal defects, the other who underwent vascular reactivity testing, were each completed with two sets of suitable fluid and structural initial and boundary conditions and used to obtain detailed transient simulations of artery wall motion and hemodynamics in both clinically measured and predicted configurations. The simulation of septal defect closure, in which input flow and proximal vascular stiffness were decreased, exhibited substantial decreases in proximal velocity, wall shear stress (WSS), and pressure in the post-op state. The simulation of vascular reactivity, in which distal vascular resistance and proximal vascular stiffness were decreased, displayed negligible changes in velocity and WSS but a significant drop in proximal pressure in the reactive state. This new patient-specific technique provides much greater detail regarding the function of the pulmonary circuit than can be obtained with current medical imaging methods alone, and holds promise for enabling surgical planning.

1.
Davies
,
P. F.
, 1995, “
Flow Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
0031-9333,
75
, pp.
519
560
.
2.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Artherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
2035
2042
.
3.
Topper
,
J. N.
,
Cai
,
J.
,
Falb
,
D.
, and
Gimbrone
,
M. A.
, 1996, “
Identification of Vascular Endothelial Genes Differentially Responsive to Fluid Mechanical Stimuli: Cycoloxgenase-2, Manganese Superoxide Dismutase, and Endothelial Cell Nitric Oxide Synthase are Selectively Up-Regulated by Steady Laminar Shear Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
93
, pp.
10417
10422
.
4.
Ziegler
,
T.
,
Bouzourène
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
, 1998, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
18
, pp.
686
692
.
5.
Weinberg
,
C. E.
,
Hertzberg
,
J. R.
,
Ivy
,
D. D.
,
Kirby
,
K. S.
,
Chan
,
K. C.
,
Valdes-Cruz
,
L.
, and
Shandas
,
R.
, 2005, “
Extraction of Pulmonary Vascular Compliance, Pulmonary Vascular Resistance, and Right Ventricular Work From Single-Pressure and Doppler Flow Measurements in Children With Pulmonary Hypertension: A New Method for Evaluating Reactivity—In Vitro and Clinical Studies
,”
Circulation
0009-7322,
110
(
17
), pp.
2609
2617
.
6.
Dyer
,
K. L.
,
Das
,
B.
,
Lanning
,
C. L.
,
Ivy
,
D. D.
,
Valdes-Cruz
,
L.
, and
Shandas
,
R.
, 2004, “
Noninvasive Tissue Doppler Measurement of Pulmonary Artery Compliance in Children With Pulmonary Hypertension
,”
Pediatr. Res.
0031-3998,
55
(
4
), pp.
39A
.
7.
Bathe
,
M.
, and
Kamm
,
R. D.
, 1998, “
A Fluid-Structure Interaction Finite Element Analysis of Pulsatile Blood Flow Through a Compliant Stenotic Artery
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
4
), pp.
361
396
.
8.
Zhang
,
W.
,
Herrera
,
C.
,
Atluri
,
S. N.
, and
Kassab
,
G. S.
, 2004, “
Effect of Surrounding Tissue on Vessel Fluid and Solid Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
760
769
.
9.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2001, “
Steady Flow and Wall Compression in Stenotic Arteries: A Three Dimensional Thick-Wall Model With Fluid-Wall Interactions
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
548
557
.
10.
Tang
,
D.
,
Yang
,
C.
,
Walker
,
H.
,
Kobayachi
,
S.
, and
Ku
,
D. N.
, 2002, “
Simulating Cyclic Artery Compression Using a 3D Unsteady Model With Fluid-Structure Interactions
,”
Comput. Struct.
0045-7949,
80
(
20
), pp.
1651
1665
.
11.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
, and
Vito
,
R. P.
, 2003, “
Effect of Steosis Asymmetry on Blood Flow and Artery Compression: A Three-Dimensional Fluid-Structure Interaction Model
,”
Ann. Biomed. Eng.
0090-6964,
31
(
10
), pp.
1182
1193
.
12.
Lee
,
K. W.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
, 2004, “
Ultrasound Image-Based Computer Model of a Common Carotid Artery With a Plaque
,”
Med. Eng. Phys.
1350-4533,
26
(
10
), pp.
823
840
.
13.
Ramaswamy
,
S. D.
,
Vigmostad
,
S. C.
,
Wahle
,
A.
,
Lai
,
Y. G.
,
Olszewski
,
M. E.
,
Braddy
,
K. C.
,
Brennan
,
T. M. H.
,
Rossen
,
J. D.
,
Sonka
,
M.
, and
Chandran
,
K. B.
, 2004, “
Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery With Arterial Motion
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1628
1642
.
14.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2004, “
Effects of a Lipid Pool on Stress/Strain Distributions in Stenotic Arteries: 3-D Fluid-Structure (FSI) Models
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
3
), pp.
363
370
.
15.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
, 2004, “
3D MRI-Based Multicomponent FSI Models for Athersclerotic Plaques
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
947
960
.
16.
DeGroff
,
C. G.
,
Orlando
,
W. W.
, and
Shandas
,
R.
, 2003, “
Insights Into the Effect of Aortic Compliance on Doppler Diastolic Flow Patterns Seen in Coarctation of the Aorta: A Numeric Study
,”
J. Am. Soc. Echocardiogr
0894-7317,
16
(
2
), pp.
162
169
.
17.
Formaggia
,
L.
,
Gerbeau
,
J. F.
,
Nobile
,
F.
, and
Quateroni
,
A.
, 2001, “
On the Coupling of 3D and 1D Navier-Stokes equations for Flow Problems in Compliant Vessels
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
(
6–7
), pp.
561
582
.
18.
Chen
,
S. Y. J.
, and
Carroll
,
J. D.
, 2000, “
3-D Reconstruction of Coronary Arterial Tree to Optimize Angiographic Visualization
,”
IEEE Trans. Med. Imaging
0278-0062,
19
(
4
), pp.
318
336
.
19.
Rodes-Cabau
,
J.
,
Domingo
,
E.
,
Roman
,
A.
,
Majo
,
J.
,
Lara
,
B.
,
Padilla
,
F.
,
Anivarro
,
I.
,
Angel
,
J.
,
Tardif
,
J. C.
, and
Soler-Soler
,
J.
, 2003, “
Intravascular Ultrasound of the Elastic Pulmonary Arteries: A New Approach for the Evaluation of Primary Pulmonary Hypertension
,”
Heart
1355-6037,
89
(
3
), pp.
311
316
.
20.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
, 2nd ed,
Springer
,
New York
.
21.
Milnor
,
W. R.
, 1989,
Hemodynamics
,
Williams and Wilkins
,
Baltimore
.
22.
Pannati
,
G.
,
Migliavacca
,
F.
,
Dubini
,
G.
,
Pietrabissa
,
R.
, and
deLeval
,
M. R.
, 1997, “
A Mathematical Model of Circulation in the Presence of Bidirectional Cavopulmonary Anastomosis in Children With an Univentricular Heart
,”
Med. Eng. Phys.
1350-4533,
19
(
3
), pp.
223
234
.
23.
Zhang
,
Y.
,
Dunn
,
M. L.
,
Drexler
,
E. S.
,
McCowan
,
C. N.
,
Slifka
,
A. J.
,
Ivy
,
D. D.
, and
Shandas
,
R.
, 2005, “
A Microstructural Hyperelastic Model of Pulmonary Arteries Under Normo- and Hypertensive Conditions
,”
Ann. Biomed. Eng.
0090-6964,
33
(
8
), pp.
1042
1052
.
24.
Fung
,
Y. C.
, and
Liu
,
S. O.
, 1992, “
Strain Distribution in Small Blood Vessels With Zero-Stress State Taken Into Consideration
,”
Am. J. Physiol.
0002-9513,
262
(
2
), pp.
H544
H552
.
25.
Delfino
,
A.
,
Stergiopulos
,
N.
,
Moore
,
J. E.
, and
Meister
,
J. J.
, 1997, “
Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
777
786
.
26.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw–Hill
,
New York
.
27.
Cook
,
R. D.
, 2002,
Concepts and Applications of Finite Element Analysis
,
Wiley
,
New York
.
28.
Khunatorn
,
Y.
,
Shandas
,
R.
,
DeGroff
,
C. G.
, and
Mahalingam
,
S.
, 2003, “
Comparison of In Vitro Velocity Measurements in a Scaled Total Cavopulmonary Connection With Computational Predictions
,”
Ann. Biomed. Eng.
0090-6964,
31
(
7
), pp.
810
822
.
29.
Khunatorn
,
Y.
,
Mahalingam
,
S.
,
DeGroff
,
C. G.
, and
Shandas
,
R.
, 2002, “
Influence of Connection Geometry and SVC-IVC Flow Rate Ratio on Flow Structures Within the Total Cavopulmonary Connection: A Numerical Study
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
364
377
.
30.
DeGroff
,
C. G.
,
Orlando
,
W.
,
Hertzberg
,
J.
,
Shandas
,
R.
, and
Valdes-Cruz
,
L.
, 2002, “
Effect of Reverse Flow on the Fluid Dynamics of the Total Cavo-Pulmonary Connection: A Potential Cause of Progressive Heart Failure
,”
J. Am. Coll. Cardiol.
0735-1097,
39
(
5
), pp.
407A
407A
.
31.
Birnbaum
,
B.
,
Orlando
,
W.
,
Shandas
,
R.
,
Hertzberg
,
J.
, and
Degroff
,
C.
, 2004, “
Oscillatory Events With Steady Flow Boundary Conditions in Numerical Simulations of the Fontan Operation
,”
J. Investig. Med.
1081-5589,
52
(
1
), pp.
S170
S170
.
32.
Kawut
,
S. M.
,
Horn
,
E. M.
,
Berekasvili
,
K. K.
,
Garofono
,
R. P.
,
Goldsmith
,
R. L.
,
Widlitz
,
A. C.
,
Rosenzweig
,
E. B.
,
Kerstein
,
D.
, and
Basrt
,
R. J.
, 2005, “
New Predictors of Outcome in Idiopathic Pulmonary Arterial Hypertension
,”
Am. J. Cardiol.
0002-9149,
95
(
2
), pp.
199
203
.
33.
Rashid
,
A.
, and
Ivy
,
D.
, 2005, “
Severe Pediatric Pulmonary Hypertension: New Management Strategies
,”
Arch. Dis. Child
0003-9888,
90
, pp.
92
98
.
34.
Sho
,
E.
,
Komatsu
,
M.
,
Sho
,
M.
,
Nanjo
,
H.
,
Singh
,
T. M.
,
Xu
,
C. P.
,
Masuda
,
H.
, and
Zarins
,
C. K.
, 2003, “
High Flow Drives Vascular Endothelial Cell Proliferation During Flow-Induced Arterial Remodeling Associated With the Expression of Vascular Endothelial Growth Factor
,”
Exp. Mol. Pathol.
0014-4800,
75
(
1
), pp.
1
11
.
35.
Sho
,
E.
,
Nanjo
,
H.
,
Sho
,
M.
,
Kobayashi
,
M.
,
Komatsu
,
M.
,
Kawamura
,
K.
,
Xu
,
C. P.
,
Zarins
,
C. K.
, and
Masuda
,
H.
, 2004, “
Arterial Enlargement, Tortuosity, and Intimal Thickening in Response to Sequential Exposure to High and Low Wall Shear Stress
,”
J. Vasc. Surg.
0741-5214,
39
(
3
), pp.
601
612
.
36.
Brown
,
D. J.
, 1996, “
Input Impedance and Reflection Coefficient in Fractal-Like Models of Asymmetrically Branching Compliant d\Tubes
,”
IEEE Trans. Biomed. Eng.
0018-9294,
43
(
7
), pp.
715
722
.
37.
Olufsen
,
M. S.
, 1999, “
Structured Tree Outflow Conditions for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol.
0002-9513,
276
(
1
), pp.
H257
H268
.
38.
Greenfield
,
J. C.
, and
Griggs
,
D. M.
, 1963, “
Relations Between Pressure and Diameter in Main Pulmonary Artery of Man
,”
J. Appl. Physiol.
0021-8987,
18
(
3
), pp.
557
559
.
39.
Gurtner
,
H. P.
,
Walser
,
P.
, and
Fassler
,
B.
, 1975, “
Normal Values for Pulmonary Hemodynamics at Rest and During Exercise in Man
,”
Prog. Resp. Res.
,
9
, pp.
295
315
.
40.
Slife
,
D. M.
,
Latham
,
R. D.
,
Sipkema
,
P.
, and
Westerhof
,
N.
, 1990, “
Pulmonary Arterial Compliance at Rest and Exercise in Normal Humans
,”
Am. J. Physiol.
0002-9513,
258
, pp.
H1823
H1828
.
You do not currently have access to this content.