A computational fluid dynamics (CFD) approach was presented to model the blood flows in the carotid bifurcation and the brain arteries under altered gravity. Physical models required for CFD simulation were introduced including a model for arterial wall motion due to fluid-wall interactions, a shear thinning fluid model of blood, a vascular bed model for outflow boundary conditions, and a model for autoregulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models were solved iteratively using the pseudocompressibility method and dual time stepping. Gravity source terms were added to the Navier-Stokes equations to take the effect of gravity into account. For the treatment of complex geometry, a chimera overset grid technique was adopted to obtain connectivity between arterial branches. For code validation, computed results were compared with experimental data for both steady-state and time-dependent flows. This computational approach was then applied to blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other using an anatomical data set. A three-dimensional Circle of Willis configuration was reconstructed from subject-specific magnetic resonance images using an image segmentation method. Through the numerical simulation of blood flow in two model problems, namely, the carotid bifurcation and the brain arteries, it was observed that the altered gravity has considerable effects on arterial contraction∕dilatation and consequent changes in flow conditions.

1.
Reneman
,
R. S.
,
Merode
,
T. van
,
Hick
,
K.
,
Muijtjens
,
A. M. M.
, and
Hoeks
,
A. P. G.
, 1986, “
Age-Related Changes in Carotid Artery Wall Properties in Man
,”
Ultrasound Med. Biol.
0301-5629,
12
, pp.
465
471
.
2.
Giller
,
C. A.
,
Bowman
,
G.
,
Dyer
,
H.
,
Mootz
,
L.
, and
Krippner
,
W.
, 1993, “
Cerebral Arterial Diameters During Changes in Blood Pressure and Carbon Dioxide During Craniotomy
,”
Neurosurgery
0148-396X,
32
(
5
), pp.
737
741
.
3.
Caro
,
C. G.
,
Pedley
,
T. J.
,
Schroter
,
R. C.
, and
Seed
,
W. A.
, 1978,
The Mechanics of the Circulation
,
Oxford University Press
,
Oxford
.
4.
Steinman
,
D. A.
, and
Ethier
,
C. R.
, 1994, “
Effect of Wall Distensibility on Flow in a Two-Dimensional End-to-Side Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
294
301
.
5.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
, pp.
845
856
.
6.
Zhao
,
S. Z.
,
Ariff
,
B.
,
Long
,
Q.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
, and
Xu
,
X. Y.
, 2002, “
Interindividual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans
,”
J. Biomech.
0021-9290,
35
, pp.
1367
1377
.
7.
Alpers
,
B. J.
,
Berry
,
R. G.
, and
Paddison
,
R. M.
, 1959, “
Anatomical Studies of the Circle of Willis in Normal Brain
,”
Schweiz Arch. Neurol. Psychiatr.
0258-7661,
81
, pp.
409
418
.
8.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
, 1999, “
Predictive Medicine: Computational Techniques in Therapeutic Decision-Making
,”
Comput. Aided Surg.
1092-9088,
4
(
5
), pp.
231
247
.
9.
Cebral
,
J. R.
,
Lohner
,
R.
, and
Burgess
,
J.
, 2000, “
Computer Simulation of Cerebral Artery Clipping: Relevance to Aneurysm Neuro-Surgery Planning
,” in
Proceeding of ECCOMAS, Sept. 11–14
,
Barcelona-Spain
.
10.
Quarteroni
,
A.
,
Tuveri
,
M.
, and
Veneziani
,
A.
, 2000, “
Computational Vascular Fluid Dynamics: Problems, Models and Methods
,”
Computing and Visualization in Science
,
2
(
4
), pp.
163
197
.
11.
Steinman
,
D. A.
,
Thomas
,
J. B.
,
Ladak
,
H. M.
,
Milnor
,
J. S.
,
Rutt
,
B. K.
, and
Spence
,
J. D.
, 2002, “
Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and MRI
,”
Magn. Reson. Med.
0740-3194,
47
(
1
), pp.
149
159
.
12.
Formaggia
,
L.
,
Gerbeau
,
J. F.
,
Nobile
,
F.
, and
Quarteroni
,
A.
, 2000, “
Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
40
(
1
), pp.
376
401
.
13.
Ferrandez
,
A.
,
David
,
T.
, and
Brown
,
M. D.
, 2002, “
Numerical Models of Auto-Regulation and Blood Flow in the Cerebral Circulation
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
(
1
), pp.
7
20
.
14.
Ferrandez
,
A.
, and
David
,
T.
, 2000, “
Computational Models of Blood Flow in the Circle of Willis
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
(
1
), pp.
1
26
.
15.
Milnor
,
W. R.
, 1989,
Hemodynamics
, 2nd ed.,
The Williams and Wilkins Co.
16.
Nichols
,
W. W.
, and
O’Rourke
,
M. F.
, 1998,
McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
, 4th ed.,
Arnold
,
London
.
17.
Kiris
,
C.
, and
Kwak
,
D.
, 2002, “
Aspects of Unsteady Incompressible Flow Simulations
,”
Comput. Fluids
0045-7930,
31
, pp.
627
638
.
18.
Rogers
,
S. E.
,
Kwak
,
D.
, and
Kiris
,
C.
, 1991, “
Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations
,”
AIAA J.
0001-1452,
29
(
4
), pp.
603
610
.
19.
Kiris
,
C.
,
Kwak
,
D.
,
Rogers
,
S.
, and
Chang
,
I.-D.
, 1997, “
Computational Approach for Probing the Flow Through Artificial Heart Devices
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
452
460
.
20.
Kwak
,
D.
,
Kiris
,
C.
, and
Kim
,
C. S.
, 2005, “
Computational Challenges of Viscous Incompressible Flows
,”
Comput. Fluids
0045-7930,
34
(
3
), pp.
283
299
.
21.
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
0021-9290,
32
, pp.
601
608
.
22.
Gijsen
,
F. J. H.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90Degree Curved Tube
,”
J. Biomech.
0021-9290,
32
, pp.
705
713
.
23.
Gray
,
H.
, 1918,
Anatomy of the Human Body
, 20th ed.,
Lewis
,
W. H.
, ed.,
Lea and Febiger
,
New York
, Bartleby.com, 2000.
24.
Newell
,
D. W.
,
Aaslid
,
R.
, and
Lam
,
A.
,
Mayberg
,
T. S.
, and
Winn
,
H. R.
, 1994, “
Comparison of Flow and Velocity During Dynamic Autoregulation Testing in Humans
,”
Stroke
0039-2499,
25
(
4
), pp.
793
797
.
You do not currently have access to this content.