Environmental variations in patient-dependent and surgical factors were modeled using robust optimization with a finite element acetabular cup-pelvis model. A previously developed statistical optimization scheme was used to: (1) determine the cup geometry and the optimal cup-bone interference that maximized bone-implant contact areas and minimized changes in the gap volume between the implant and bone surface during gait loading and unloading; and (2) determine the relative contributions of design, patient-dependent, and surgical factors to variations in bone-implant contact areas and a change in gap volume. The statistical analyses indicated that the design variables, namely the equatorial diameter and eccentricity, explained most of the variations in the performance measures. Further, the hemispherical designs performed better than the nonhemispherical designs. The 58mm hemispherical cup, with 2mm diametral interferences, minimized the change in gap volume and attained 82% and 81% of the maximum predicted total and rim contact areas, respectively. The equatorial diameter and eccentricity, not the patient-dependent and surgical factors, explained most of the variations in the performance measures. Perfect surface apposition was not attained with any of the cup designs.

1.
Schmalzried
,
T. P.
,
Jasty
,
M.
, and
Harris
,
W. H.
, 1992, “
Periprosthetic Bone Loss in Total Hip Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
74
, pp.
849
863
.
2.
Bloebaum
,
R. D.
,
Bachus
,
K. N.
,
Momberger
,
N. G.
, and
Hofmann
,
A. A.
, 1994, “
Mineral Apposition Rates of Human Cancellous Bone at the Interface of Porous Coated Implants
,”
J. Biomed. Mater. Res.
0021-9304,
28
, pp.
537
544
.
3.
Kim
,
Y. S.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
, and
Callaghan
,
J. J.
, 1995, “
Reamed Surface Topography and Component Seating in Press-Fit Cementless Acetabular Fixation
,”
J. Arthroplasty
0883-5403,
10S
, pp.
14
21
.
4.
MacKenzie
,
J. R.
,
Callaghan
,
J. J.
,
Pedersen
,
D. R.
, and
Brown
,
T. D.
, 1994, “
Areas of Contact and Extent of Gaps with Implantation of Oversized Acetabular Components in Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
298
, pp.
127
136
.
5.
Schmalzried
,
T. P.
, and
Harris
,
W. H.
, 1992, “
The Harris-Galante Porous-coated Acetabular Component with Screw Fixation
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
74
, pp.
1130
1139
.
6.
Schwartz
,
J. T.
,
Engh
,
C. A.
,
Forte
,
M. R.
,
Kukita
,
Y.
, and
Grandia
,
S. K.
, 1993, “
Evaluation of Initial Surface Apposition in Porous-Coated Acetabular Components
,”
Clin. Orthop. Relat. Res.
0009-921X,
293
, pp.
174
187
.
7.
Callaghan
,
J. J.
,
Dysart
,
S. H.
, and
Savory
,
C. G.
, 1988, “
The Uncemented Porous-coated Anatomic Total Hip Prosthesis
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
70
, pp.
337
346
.
8.
Manley
,
M. T.
,
Capello
,
W. N.
,
D’Antonio
,
J. A.
,
Edidin
,
A. A.
, and
Geesink
,
R. G. T.
, 1998, “
Fixation of Acetabular Cups without Cement in Total Hip Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
80
, pp.
1175
1185
.
9.
Dalstra
,
M.
,
Huiskes
,
R.
,
Odgaard
,
A.
, and
van Erning
,
L.
, 1993, “
Mechanical and Textural Properties of Pelvic Trabecular Bone
,”
J. Biomech.
0021-9290,
26
, pp.
523
535
.
10.
MacDonald
,
W.
,
Carlsson
,
L. V.
,
Charnley
,
G. J.
,
Jacobsson
,
C. M.
, and
Johansson
,
C. B.
, 1999, “
Inaccuracy of Acetabular Reaming Under Surgical Conditions
,”
J. Arthroplasty
0883-5403,
14
, pp.
730
737
.
11.
Spears
,
I. R.
,
Morlock
,
M. M.
,
Pfleiderer
,
M.
,
Schneider
,
E.
, and
Hille
,
E.
, 1999, “
The Influence of Friction and Interference on the Seating of a Hemispherical Press-fit Cup: A Finite Element Investigation
,”
J. Biomech.
0021-9290,
32
, pp.
1183
1189
.
12.
Crowninshield
,
R. D.
,
Johnston
,
R. C.
,
Andrews
,
J. G.
, and
Brand
,
R. A.
, 1978, “
A Biomechanical Investigation of the Human Hip
,”
J. Biomech.
0021-9290,
11
, pp.
75
85
.
13.
Pedersen
,
D. R.
,
Brand
,
R. A.
, and
Davy
,
D. T.
, 1997, “
Pelvic Muscle and Acetabular Contact Forces During Gait
,”
J. Biomech.
0021-9290,
30
, pp.
959
965
.
14.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
, pp.
969
990
.
15.
Kotzar
,
G. M.
,
Davy
,
D. T.
,
Goldberg
,
V. M.
,
Heiple
,
K. G.
,
Berilla
,
J.
,
Heiple
,
K. G.
Jr
,
Brown
,
R. H.
, and
Burstein
,
A. H.
, 1991, “
Telemetrized in Vivo Hip Joint Force Data: A Report on Two Patients After Total Hip Surgery
,”
J. Orthop. Res.
0736-0266,
9
, pp.
621
633
.
16.
Schmidt
,
P. N.
, 1999, “
A Numerical Investigation of Acetabular Components in Total Hip Arthroplasty
,” Ph.D. thesis, Cornell University, Ithaca, NY.
17.
Dalstra
,
M.
, and
Huiskes
,
R.
, 1995, “
Load Transfer across the Pelvic Bone
,”
J. Biomech.
0021-9290,
28
, pp.
715
724
.
18.
Pedersen
,
D. R.
,
Crowninshield
,
R. D.
,
Brand
,
R. A.
, and
Johnston
,
R. C.
, 1982, “
An Axisymmetric Model of Acetabular Components in Total Hip Arthroplasty
,”
J. Biomech.
0021-9290,
15
, pp.
305
315
.
19.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
59
, pp.
954
962
.
20.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
0021-9290,
34
, pp.
569
577
.
21.
Hauser
,
D. L.
,
Fox
,
J. C.
,
Sukin
,
D.
,
Mudge
,
B.
, and
Coutts
,
R. D.
, 1997, “
Anatomic Variation of Structural Properties of Periacetabular Bone as a Function of Age: A Quantitative Computed Tomography Study
,”
J. Arthroplasty
0883-5403,
12
, pp.
804
811
.
22.
Dammak
,
M.
,
Shirazi-Adl
,
A.
,
Schwartz
,
M.
Jr
, and
Gustavson
,
L.
, 1997, “
Friction Properties at the Bone-Metal Interface: Comparison of Four Different Porous Metal Surfaces
,”
J. Biomed. Mater. Res.
0021-9304,
35
, pp.
329
336
.
23.
Rancourt
,
D.
,
Shirazi-Adl
,
A.
,
Drouin
,
G.
, and
Paiement
,
G.
, 1990, “
Friction Properties of the Interface between Porous-surfaced Metals and Tibial Cancellous Bone
,”
J. Biomed. Mater. Res.
0021-9304,
24
, pp.
1503
1519
.
24.
Shirazi-Adl
,
A.
,
Dammak
,
M.
, and
Paiement
,
G.
, 1993, “
Experimental Determination of Friction Characteristics at the Trabecular Bone/Porous-coated Metal Interface in Cementless Implants
,”
J. Biomed. Mater. Res.
0021-9304,
27
, pp.
167
175
.
25.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
,”
Technometrics
0040-1706,
21
, pp.
239
245
.
26.
Chang
,
P. B.
,
Williams
,
B. J.
,
Santner
,
T. J.
,
Notz
,
W. I.
, and
Bartel
,
D. L.
, 1999, “
Robust Optimization of Total Joint Replacements Incorporating Environmental Variables
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
304
310
.
27.
Koehler
,
J. R.
, and
Owen
,
A. B.
, 1996, “
Computer Experiments
,” Handbook of Statistics Vol.
13
,
Elsevier Science
, New York, NY.
28.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
, pp.
409
435
.
29.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
, pp.
455
492
.
30.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Screening Predicting and Computer Experiments
,”
Technometrics
0040-1706,
34
, pp.
15
25
.
31.
Engh
,
C. A.
,
Zettl-Schaffer
,
K. F.
,
Kukita
,
Y.
,
Sweet
,
D.
,
Jasty
,
M.
, and
Bragdon
,
C.
, 1993, “
Histological and Radiographic Assessment of Well Functioning Porous-coated Acetabular Components—A Human Postmortem Retrieval Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
, pp.
814
824
.
32.
Udomkiat
,
P.
,
Dorr
,
L. D.
, and
Wan
,
Z.
, 2002, “
Cementless Hemispheric Porous-coated Sockets Implanted with Press-fit Technique without Screws: Average Ten-Year Follow-up
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84
, pp.
1195
1200
.
33.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
364
372
.
You do not currently have access to this content.