The pulsatile flow and gas transport of a Newtonian passive fluid across an array of cylindrical microfibers are numerically investigated. It is related to an implantable, artificial lung where the blood flow is driven by the right heart. The fibers are modeled as either squared or staggered arrays. The pulsatile flow inputs considered in this study are a steady flow with a sinusoidal perturbation and a cardiac flow. The aims of this study are twofold: identifying favorable array geometry/spacing and system conditions that enhance gas transport; and providing pressure drop data that indicate the degree of flow resistance or the demand on the right heart in driving the flow through the fiber bundle. The results show that pulsatile flow improves the gas transfer to the fluid compared to steady flow. The degree of enhancement is found to be significant when the oscillation frequency is large, when the void fraction of the fiber bundle is decreased, and when the Reynolds number is increased; the use of a cardiac flow input can also improve gas transfer. In terms of array geometry, the staggered array gives both a better gas transfer per fiber (for relatively large void fraction) and a smaller pressure drop (for all cases). For most cases shown, an increase in gas transfer is accompanied by a higher pressure drop required to power the flow through the device.

1.
Fazzalari
,
F. L.
,
Bartlett
,
R. H.
et al.
, 1994, “
An Intrapleural Lung Prothesis-Rationale, Design, and Testing
,”
Artif. Organs
0160-564X,
18
(
11
), pp.
801
805
.
2.
Lynch
,
W. R.
,
Montoya
,
J. P.
et al.
, 2000, “
Hemodynamic Effect of a Low-Resistance Artificial Lung in Series With the Native Lungs of Sheep
,”
Ann. Thorac. Surg.
0003-4975,
69
(
2
), pp.
351
356
.
3.
Zwischenberger
,
J. B.
, and
Alpard
,
S. K.
, 2002, “
Artificial Lungs: A New Inspiration
,”
Perfusion
0267-6591,
17
(
4
), pp.
253
268
.
4.
Ichinose
,
K.
,
Okamoto
,
T.
et al.
, 2004, “
Comparison of a New Heparin-Coated Dense Membrane Lung With Nonheparin-Coated Dense Membrane Lung for Prolonged Extracorporeal Lung Assist in Goats
,”
Artif. Organs
0160-564X,
28
(
11
), pp.
993
1001
.
5.
Haft
,
J. W.
,
Griffith
,
B. P.
et al.
, 2002, “
Results of an Artificial-Lung Survey to Lung Transplant Program Directors
,”
J. Heart Lung Transplant
1053-2498,
21
(
4
), pp.
467
472
.
6.
Vaslef
,
S. N.
,
Mockros
,
L. F.
et al.
, 1994, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
1058-2916,
40
, pp.
990
996
.
7.
Vaslef
,
S. N.
,
Mockros
,
L. F.
et al.
, 1994, “
Computer-Assisted Design of an Implantable, Intrathoracic Artificial Lung
,”
Artif. Organs
0160-564X,
18
(
11
), pp.
813
817
.
8.
Hewitt
,
T. J.
,
Hattler
,
B. G.
et al.
, 1998, “
A Mathematical Model of Gas Exchange in an Intravenous Membrane Oxygenator
,”
Ann. Biomed. Eng.
0090-6964,
26
(
1
), pp.
166
178
.
9.
Dierickx
,
P. W.
,
De Somer
,
F.
et al.
, 2000, “
Hydrodynamic Characteristics of Artificial Lungs
,”
ASAIO J.
1058-2916,
46
(
5
), pp.
532
535
.
10.
Kanamori
,
T.
,
Niwa
,
M.
et al.
, 2000, “
Estimate of Gas Transfer Rates of Intravascular Membrane Oxygenator
,”
ASAIO J.
1058-2916,
46
(
5
), pp
612
619
.
11.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
et al.
, 2001, “
Mass Transfer Characteristics of Artificial Lungs
,”
ASAIO J.
1058-2916,
47
(
6
), pp.
628
633
.
12.
Weissman
,
M. H.
, and
Mockros
,
L. F.
, 1968, “
Oxygen and Carbon Dioxide Transfer in Membrane Oxygenators
,”
Med. Biol. Eng.
0025-696X,
7
, pp.
169
184
.
13.
Smeby
,
L.
, and
Grimsrud
,
L.
, 1974, “
Theoretical Investigation of Mass Transfer in Membrane Oxygenators
,”
Med. Biol. Eng.
0025-696X,
12
(
5
), pp.
698
706
.
14.
Dorson
,
W. J.
,
Larsen
,
K. G.
et al.
, 1971, “
Oxygen Transfer to Blood: Data and Theory
,”
Trans. Am. Soc. Artif. Intern. Organs
0066-0078,
17
, pp.
309
316
.
15.
Baker
,
D. A.
,
Holte
,
J. E.
et al.
, 1991, “
Computationally Two-Dimensional Finite-Difference Model for Hollow-Fiber Blood-Gas Exchange Device
,”
Med. Biol. Eng. Comput.
0140-0118,
29
, pp.
482
488
.
16.
Wang
,
N. H. L.
, and
Keller
,
N. H.
, 1979, “
Solute Transport Induced by Erythrocyte Motions in Shear-Flow
,”
Trans. Am. Soc. Artif. Intern. Organs
0066-0078,
25
, pp.
14
18
.
17.
Wang
,
N. H. L.
, and
Keller
,
N. H.
, 1985, “
Augmented Transport of Extracellular Solutes in Concentrated Erythrocyte Suspensions in Couette-Flow
,”
J. Colloid Interface Sci.
0021-9797,
103
(
1
), pp.
210
225
.
18.
Dierickx
,
P. W. T.
,
De Wachter
,
D.
et al.
, 2000, “
Blood Flow Around Hollow Fibers
,”
Int. J. Artif. Organs
0391-3988,
23
(
9
), pp.
610
617
.
19.
Dierickx
,
P. W.
,
De Wachter
,
D. S.
et al.
, 2001, “
Two-Dimensional Finite Element Model for Oxygen Transfer in Cross-Flow Hollow Fiber Membrane Artificial Lungs
,”
Int. J. Artif. Organs
0391-3988,
24
(
9
), pp.
628
635
.
20.
Mockros
,
L. F.
, and
Gaylor
,
J. D. S.
, 1975, “
Artificial Lung Design—Tubular Membrane Units
,”
Med. Biol. Eng.
0025-696X,
13
(
2
), pp.
171
181
.
21.
Gage
,
K. L.
,
Gartner
,
M. J.
et al.
, 2002, “
Predicting Membrane Oxygenator Pressure Drop Using Computational Fluid Dynamics
,”
Artif. Organs
0160-564X,
26
(
7
), pp.
600
607
.
22.
Boschetti
,
F.
,
Cook
,
K. E.
et al.
, 2003, “
Blood Flow Pulsatility Effects Upon Oxygen Transfer in Artificial Lungs
,”
ASAIO J.
1058-2916,
49
(
6
), pp.
678
686
.
23.
Pennati
,
G.
,
Fiore
,
G. B.
et al.
, 1998, “
Mass Transfer Efficiency of a Commercial Hollow Fiber Oxygenator During Six-Hour in vitro Perfusion With Steady and Pulsatile Blood Flow
,”
Int. J. Artif. Organs
0391-3988,
21
(
2
), pp.
97
106
.
24.
Haft
,
J. W.
,
Bull
,
J. L.
et al.
, 2003, “
Design of an Artificial Lung Compliance Chamber for Pulmonary Replacement
,”
ASAIO J.
1058-2916,
49
(
1
), pp.
35
40
.
25.
Thompson
,
J. F.
,
Soni
,
B. K.
et al.
, 1999, Handbook of Grid Generation,
CRC Press
, Boca Raton.
26.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
, Hemisphere Pub. Corp.,
McGraw-Hill
, New York, Washington.
27.
Edwards
,
D. A.
,
Shapiro
,
M.
et al.
, 1990, “
The Influence of Reynolds Number Upon the Apparent Permeability of Spatially Periodic Arrays of Cylinders
,”
Phys. Fluids A
0899-8213,
2
(
1
), pp.
45
55
.
28.
Ghaddar
,
C. K.
, 1995, “
On the Permeability of Unidirectional Fibrous Media: A Parallel Computational Approach
,”
Phys. Fluids
1070-6631,
7
(
11
), pp.
2563
2585
.
You do not currently have access to this content.