The lattice Boltzmann method is used to model oscillatory flow in the spinal subarachnoid space. The effect of obstacles such as trabeculae, nerve bundles, and ligaments on fluid velocity profiles appears to be small, when the flow is averaged over the length of a vertebra. Averaged fluid flow in complex models is little different from flow in corresponding elliptical annular cavities. However, the obstacles stir the flow locally and may be more significant in studies of tracer dispersion.

1.
Henry-Feugeas
,
M.-C.
,
Idy-Peretti
,
I.
,
Baledent
,
O.
,
Poncelet-Didon
,
A.
,
Zannoli
,
G.
,
Bittoun
,
J.
, and
Schouman-Claeys
,
E.
, 2000, “
Origin of Subarachnoid Cerebrospinal Fluid Pulsations: A Phase-Contrast MR Analysis
,”
Magn. Reson. Imaging
0730-725X,
18
, pp.
387
395
.
2.
Perren
,
F.
,
Buchser
,
E.
,
Chedel
,
D.
,
Hirt
,
L.
,
Maeder
,
P.
, and
Vingerhoets
,
F.
, 2004, “
Spinal Cord Lesion After Long-Term Intrathecal Clonidine and Bupivacaine Treatment for the Management of Intractable Pain
,”
Pain
0304-3959,
109
, pp.
189
194
.
3.
Ascari
,
L.
,
Stefanini
,
C.
,
Menciassi
,
A.
,
Sahoo
,
S.
,
Rabischong
,
P.
, and
Dario
,
P.
, 2003, “
A New Active Microendoscope for Exploring the Subarachnoid Space in the Spinal Cord
,” in
Proceedings of the 2003 IEEE International Conference on Robotics and Automation
,
IEEE
, Taipei.
4.
Levy
,
L. M.
, 2000, “
Toward an Understanding of Syringomyelia: MR Imaging of CSF Flow and Neuraxis Motion
,”
AJNR Am. J. Neuroradiol.
0195-6108,
21
, pp.
45
46
.
5.
Haughton
,
V. M.
,
Korosec
,
F. R.
,
Medow
,
J. E.
,
Dolar
,
M. T.
, and
Iskandar
,
B. J.
, 2003, “
Peak Systolic and Diastolic CSF Velocity in the Foramen Magnum in Adult Patients With Chiari I Malformations and in Normal Control Participants
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
, pp.
169
176
.
6.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
71
79
.
7.
Alperin
,
N. J.
,
Lee
,
S. H.
,
Loth
,
F.
,
Raksin
,
P. B.
, and
Lichtor
,
T.
, 2000, “
MR-Intracranial Pressure (ICP): A Method to Measure Intracranial Elastance and Pressure Noninvasively by Means of MR Imaging: Baboon and Human Study
,”
Radiology
0033-8419,
217
(
3
), pp.
878
885
.
8.
Martys
,
N.
, and
Chen
,
H.
, 1996, “
Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
53
, pp.
743
750
.
9.
Qian
,
Y. H.
,
d’Humières
,
D.
, and
Lallemand
,
P.
, 1992, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
0295-5075,
17
(
6 BIS
), pp.
479
484
.
10.
Porter
,
B.
,
Zauel
,
R.
,
Stockman
,
H.
,
Guldberg
,
R.
, and
Fyhrie
,
D.
, 2005, “
3D Computational Modeling of Media Flow Through Scaffolds in a Perfusion Bioreactor
,”
J. Biomech.
0021-9290
38
(
3
), pp.
543
549
.
11.
Stockman
,
H. W.
, 1999, “
A 3D Lattice Boltzmann Code for Modeling Flow and Multi-Component Dispersion
,” SAND99–0162, Sandia National Laboratories, Albuquerque, NM, 165 pp.
12.
Stockman
,
H. W.
,
Glass
,
R. J.
,
Cooper
,
C.
, and
Rajaram
,
H.
, 1998, “
Accuracy and Computational Efficiency in 3D Dispersion via Lattice Boltzmann: Models for Dispersion in Rough Fractures and Double-Diffusive Fingering
,”
Int. J. Mod. Phys. C
0129-1831,
9
(
8
), pp.
1545
1557
.
13.
Stockman
,
H. W.
,
Johnson
,
J. P.
, and
Brown
,
S. R.
, 2001, “
Mixing at Fracture Intersections: Influence of Channel Geometry and the Reynolds and Peclet Numbers
,”
Geophys. Res. Lett.
0094-8276,
28
(
22
), pp.
4299
4302
.
14.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1972,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
,
National Bureau of Standards, Applied Mathematics Series-55
, tenth printing, Washington, D.C., p.
384
.
15.
Lambossy
,
P.
, 1952, “
Oscillations Forcées d’un Liquide Incompressible et Visqueaux Dans un Tube Rigide et Horizontal: Calcul de la Force Frottement
,”
Helv. Phys. Acta
0018-0238,
25
, pp.
371
386
.
16.
Artoli
,
A. M.
,
Hoekstra
,
A. G.
, and
Sloot
,
P. M. A.
, 2002, “
3D Pulsatile Flow with the Lattice Boltzmann BGK Method
,”
Int. J. Mod. Phys. C
0129-1831,
13
(
8
), pp.
1119
1134
.
17.
Cloyd
,
M. W.
, and
Low
,
F. N.
, 1974, “
Scanning Electron Microscopy of the Subarachnoid Space in the Dog: I. Spinal Cord Levels
,”
J. Comput. Neurosci.
0923-5313,
153
, pp.
325
368
.
18.
Kiernan
,
J. A.
, 1998,
Barr’s The Human Nervous System, an Anatomical Viewpoint
, 7th ed.,
Lippincott, Williams, and Wilkins
, Philadelphia, pp.
82
83
.
19.
Marieb
,
E. N.
, and
Mallatt
,
J.
, 2001,
Human Anatomy
,
Benjamin Cummings
, San Francisco, p.
394
.
20.
Gray
,
H.
, 1977,
Gray’s Anatomy
, 15th American edition,
Bounty Books
, New York, pp.
708
709
.
21.
Kalata
,
W.
,
Lee
,
S.
,
Piersol
,
N.
,
Alperin
,
N.
,
Fischer
,
P.
, and
Loth
,
F.
, 2001, “
Three-Dimensional Computational Fluid Dynamics of Cerebrospinal Fluid Motion Within the Spinal Cavity
,” in
Kamm
,
R. D.
,
Schmid-Schnbein
,
J. W.
,
Ateshian
,
G. A.
, and
Hefzy
,
M. S.
eds.,
ASME Bioengineering Conference BED-50
, Snowbird, Utah, June 2001, pp.
449
450
.
You do not currently have access to this content.