The lattice Boltzmann method is used to model oscillatory flow in the spinal subarachnoid space. The effect of obstacles such as trabeculae, nerve bundles, and ligaments on fluid velocity profiles appears to be small, when the flow is averaged over the length of a vertebra. Averaged fluid flow in complex models is little different from flow in corresponding elliptical annular cavities. However, the obstacles stir the flow locally and may be more significant in studies of tracer dispersion.
Issue Section:
Fluids/Heat/Transport
Topics:
Flow (Dynamics)
1.
Henry-Feugeas
, M.-C.
, Idy-Peretti
, I.
, Baledent
, O.
, Poncelet-Didon
, A.
, Zannoli
, G.
, Bittoun
, J.
, and Schouman-Claeys
, E.
, 2000, “Origin of Subarachnoid Cerebrospinal Fluid Pulsations: A Phase-Contrast MR Analysis
,” Magn. Reson. Imaging
0730-725X, 18
, pp. 387
–395
.2.
Perren
, F.
, Buchser
, E.
, Chedel
, D.
, Hirt
, L.
, Maeder
, P.
, and Vingerhoets
, F.
, 2004, “Spinal Cord Lesion After Long-Term Intrathecal Clonidine and Bupivacaine Treatment for the Management of Intractable Pain
,” Pain
0304-3959, 109
, pp. 189
–194
.3.
Ascari
, L.
, Stefanini
, C.
, Menciassi
, A.
, Sahoo
, S.
, Rabischong
, P.
, and Dario
, P.
, 2003, “A New Active Microendoscope for Exploring the Subarachnoid Space in the Spinal Cord
,” in Proceedings of the 2003 IEEE International Conference on Robotics and Automation
, IEEE
, Taipei.4.
Levy
, L. M.
, 2000, “Toward an Understanding of Syringomyelia: MR Imaging of CSF Flow and Neuraxis Motion
,” AJNR Am. J. Neuroradiol.
0195-6108, 21
, pp. 45
–46
.5.
Haughton
, V. M.
, Korosec
, F. R.
, Medow
, J. E.
, Dolar
, M. T.
, and Iskandar
, B. J.
, 2003, “Peak Systolic and Diastolic CSF Velocity in the Foramen Magnum in Adult Patients With Chiari I Malformations and in Normal Control Participants
,” AJNR Am. J. Neuroradiol.
0195-6108, 24
, pp. 169
–176
.6.
Loth
, F.
, Yardimci
, M. A.
, and Alperin
, N.
, 2001, “Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,” J. Biomech. Eng.
0148-0731, 123
, pp. 71
–79
.7.
Alperin
, N. J.
, Lee
, S. H.
, Loth
, F.
, Raksin
, P. B.
, and Lichtor
, T.
, 2000, “MR-Intracranial Pressure (ICP): A Method to Measure Intracranial Elastance and Pressure Noninvasively by Means of MR Imaging: Baboon and Human Study
,” Radiology
0033-8419, 217
(3
), pp. 878
–885
.8.
Martys
, N.
, and Chen
, H.
, 1996, “Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method
,” Phys. Rev. E
1063-651X, 53
, pp. 743
–750
.9.
Qian
, Y. H.
, d’Humières
, D.
, and Lallemand
, P.
, 1992, “Lattice BGK Models for Navier-Stokes Equation
,” Europhys. Lett.
0295-5075, 17
(6 BIS
), pp. 479
–484
.10.
Porter
, B.
, Zauel
, R.
, Stockman
, H.
, Guldberg
, R.
, and Fyhrie
, D.
, 2005, “3D Computational Modeling of Media Flow Through Scaffolds in a Perfusion Bioreactor
,” J. Biomech.
0021-9290 38
(3
), pp. 543
–549
.11.
Stockman
, H. W.
, 1999, “A 3D Lattice Boltzmann Code for Modeling Flow and Multi-Component Dispersion
,” SAND99–0162, Sandia National Laboratories, Albuquerque, NM, 165 pp.12.
Stockman
, H. W.
, Glass
, R. J.
, Cooper
, C.
, and Rajaram
, H.
, 1998, “Accuracy and Computational Efficiency in 3D Dispersion via Lattice Boltzmann: Models for Dispersion in Rough Fractures and Double-Diffusive Fingering
,” Int. J. Mod. Phys. C
0129-1831, 9
(8
), pp. 1545
–1557
.13.
Stockman
, H. W.
, Johnson
, J. P.
, and Brown
, S. R.
, 2001, “Mixing at Fracture Intersections: Influence of Channel Geometry and the Reynolds and Peclet Numbers
,” Geophys. Res. Lett.
0094-8276, 28
(22
), pp. 4299
–4302
.14.
Abramowitz
, M.
, and Stegun
, I. A.
, 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, National Bureau of Standards, Applied Mathematics Series-55
, tenth printing, Washington, D.C., p. 384
.15.
Lambossy
, P.
, 1952, “Oscillations Forcées d’un Liquide Incompressible et Visqueaux Dans un Tube Rigide et Horizontal: Calcul de la Force Frottement
,” Helv. Phys. Acta
0018-0238, 25
, pp. 371
–386
.16.
Artoli
, A. M.
, Hoekstra
, A. G.
, and Sloot
, P. M. A.
, 2002, “3D Pulsatile Flow with the Lattice Boltzmann BGK Method
,” Int. J. Mod. Phys. C
0129-1831, 13
(8
), pp. 1119
–1134
.17.
Cloyd
, M. W.
, and Low
, F. N.
, 1974, “Scanning Electron Microscopy of the Subarachnoid Space in the Dog: I. Spinal Cord Levels
,” J. Comput. Neurosci.
0923-5313, 153
, pp. 325
–368
.18.
Kiernan
, J. A.
, 1998, Barr’s The Human Nervous System, an Anatomical Viewpoint
, 7th ed., Lippincott, Williams, and Wilkins
, Philadelphia, pp. 82
–83
.19.
Marieb
, E. N.
, and Mallatt
, J.
, 2001, Human Anatomy
, Benjamin Cummings
, San Francisco, p. 394
.20.
Gray
, H.
, 1977, Gray’s Anatomy
, 15th American edition, Bounty Books
, New York, pp. 708
–709
.21.
Kalata
, W.
, Lee
, S.
, Piersol
, N.
, Alperin
, N.
, Fischer
, P.
, and Loth
, F.
, 2001, “Three-Dimensional Computational Fluid Dynamics of Cerebrospinal Fluid Motion Within the Spinal Cavity
,” in Kamm
, R. D.
, Schmid-Schnbein
, J. W.
, Ateshian
, G. A.
, and Hefzy
, M. S.
eds., ASME Bioengineering Conference BED-50
, Snowbird, Utah, June 2001, pp. 449
–450
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.