Evidence from diverse investigations suggests that arterial growth and remodeling correlates well with changes in mechanical stresses from their homeostatic values. Ultimately, therefore, there is a need for a comprehensive theory that accounts for changes in the 3-D distribution of stress within the arterial wall, including residual stress, and its relation to the mechanisms of mechanotransduction. Here, however, we consider a simpler theory that allows competing hypotheses to be tested easily, that can provide guidance in the development of a 3-D theory, and that may be useful in modeling solid-fluid interactions and interpreting clinical data. Specifically, we present a 2-D constrained mixture model for the adaptation of a cylindrical artery in response to a sustained alteration in flow. Using a rule-of-mixtures model for the stress response and first order kinetics for the production and removal of the three primary load-bearing constituents within the wall, we illustrate capabilities of the model by comparing responses given complete versus negligible turnover of elastin. Findings suggest that biological constraints may result in sub-optimal adaptations, consistent with reported observations. To build upon this finding, however, there is a need for significantly more data to guide the hypothesis testing as well as the formulation of specific constitutive relations within the model.

1.
Rodbard
,
S.
,
1975
, “
Vascular caliber
,”
Cardiol
,
60
, pp.
4
49
.
2.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A constrained mixture model for arterial adaptations to a sustained step change in blood flow
,” Biomech Model Mechanobiol, (in press).
3.
Stergiopulus
,
N.
,
Vulliemoz
,
S.
,
Rachev
,
A.
,
Meister
,
J.-J.
, and
Greenwald
,
S. E.
,
2000
, “
Assessing the homogeneity of the elastic properties and composition of the pig aortic media
,”
J. Vasc. Res.
,
38
, pp.
237
246
.
4.
Fisher
,
G. M.
, and
Llaurado
,
J. G.
,
1966
, “
Collagen and elastin content in canine arteries selected from functionally different vascular beds
,”
Circ. Res.
,
19
, pp.
394
399
.
5.
Niedermuller
,
H.
,
Skalicky
,
M.
,
Hofecker
,
G.
, and
Kment
,
A.
,
1977
, “
Investigations on the kinetics of collagen-metabolism in young and old rats
,”
Exp. Gerontol.
,
12
, pp.
159
168
.
6.
Gelman
,
R. A.
,
Poppke
,
D. C.
, and
Piez
,
K. A.
,
1979
, “
Collagen fibril formation in vitro. The role of the nonhelical terminal regions
,”
J. Biol. Chem.
,
254
, pp.
11741
11745
.
7.
Cho
,
A.
,
Courtman
,
D. W.
, and
Langille
,
B. L.
,
1995
, “
Apoptosis (programmed cell death) in arteries of the neonatal lamb
,”
Circ. Res.
,
76
, pp.
168
175
.
8.
Wolinsky
,
H.
,
1970
, “
Response of the rat aortic media to hypertension
,”
Circ. Res.
,
26
, pp.
507
522
.
9.
Clark
,
J. M.
, and
Glagov
,
S.
,
1979
, “
Structural integration of the arterial wall
,”
Lab. Invest.
,
40
, pp.
587
602
.
10.
Kamiya
,
A.
, and
Togawa
,
T.
,
1980
, “
Adaptive regulation of wall shear stress to flow change in the canine carotid artery
,”
Am. J. Physiol.
,
239
, pp.
14
21
.
11.
Humphrey, J. D., 2002, “Cardiovascular Solid Mechanics: Cells, Tissues, and Organs,” Springer-Verlag, NY.
12.
Jackson
,
Z. S.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
,
2002
, “
Wall tissue remodeling regulates longitudinal tension in arteries
,”
Circ. Res.
,
90
, pp.
918
925
.
13.
Taber
,
L. A.
,
1998
, “
A model of aortic growth based on fluid shear and fiber stresses
,”
ASME J. Biomech. Eng.
,
120
, pp.
348
354
.
14.
Rachev
,
A.
,
2000
, “
A model of arterial adaptation to alterations in blood flow
,”
J. Elast.
,
61
, pp.
83
111
.
15.
Langille
,
B. L.
,
Bendeck
,
M. P.
, and
Keeley
,
F. W.
,
1989
, “
Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow
,”
Am. J. Physiol.
,
256
(Heart Circ Physiol 25), pp.
H931–H939
H931–H939
.
16.
Fung, Y. C., 1990, “Biomechanics: Mechanical Properties of Living Tissues,” Springer-Verlag, NY.
17.
Humphrey
,
J. D.
,
1999
, “
Remodeling of a collagenous tissue at fixed lengths
,”
ASME J. Biomech. Eng.
,
121
, pp.
591
597
.
18.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-dependent finite growth in soft elastic tissues
,”
J. Biomech.
,
27
, pp.
455
467
.
19.
Tozeren
,
A.
, and
Skalak
,
R.
,
1988
, “
Interaction of stress and growth in a fibrous tissue
,”
J. Theor. Biol.
,
130
, pp.
337
350
.
20.
Zeller
,
P. J.
, and
Skalak
,
T. C.
,
1998
, “
Contribution of individual structural components in determining the zero-stress state in small arteries
,”
J. Vasc. Res.
,
35
, pp.
8
17
.
21.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries
,”
Ann. Biomed. Eng.
,
27
, pp.
459
468
.
22.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On residual stress in arteries
,”
ASME J. Biomech. Eng.
,
108
, pp.
189
192
.
23.
Achakri
,
H.
,
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J-J.
,
1994
, “
A theoretical investigation of low frequency diameter oscillations of muscular arteries
,”
Ann. Biomed. Eng.
,
22
, pp.
253
263
.
24.
Stenmark
,
K. R.
, and
Mecham
,
R. P.
,
1997
, “
Cellular and molecular mechanisms of pulmonary vascular remodeling
,”
Annu. Rev. Physiol.
,
59
, pp.
89
144
.
25.
Rudic
,
R. D.
,
Bucci
,
M.
,
Fulton
,
D.
,
Segal
,
S. S.
, and
Sessa
,
W. C.
,
2000
, “
Temporal events underlying arterial remodeling after chronic flow reduction in mice. Correlation of structural changes with a deficit in basal nitric oxide synthesis
,”
Circ. Res.
,
86
, pp.
1160
1166
.
26.
Tronc
,
F.
,
Wassef
,
M.
,
Esposito
,
B.
,
Henrion
,
D.
,
Glagov
,
S.
, and
Tedgui
,
A.
,
1996
, “
Role of NO in flow-induced remodeling of the rabbit common carotid artery
,”
Arterioscler., Thromb., Vasc. Biol.
,
16
, pp.
1256
1262
.
27.
Langille
,
B. L.
, and
O’Donnell
,
F.
,
1986
, “
Reductions in arterial diameter production by chronic decreases in blood flow are endothelium-dependent
,”
Science
,
231
, pp.
405
407
.
28.
Masuda
,
H.
,
Kawamura
,
K.
,
Sugiyama
,
T.
, and
Kamiya
,
A.
,
1993
, “
Effects of endothelial denudation in flow-induced arterial dilation
,”
Front Med. Biol. Eng.
,
5
, pp.
57
62
.
29.
Davies
,
P. F.
,
1995
, “
Flow-mediated endothelial mechanotransduction
,”
Physiol. Rev.
,
75
, pp.
519
560
.
30.
Singh
,
T. M.
,
Abe
,
K. Y.
,
Sasaki
,
T.
,
Zhuang
,
Y-J.
,
Masuda
,
H.
, and
Zarins
,
C. K.
,
1997
, “
Basic fibroblast growth factor expression preceeds flow-induced arterial enlargement
,”
J. Surg. Res.
,
77
, pp.
165
173
.
31.
Bryant
,
S. R.
,
Bjercke
,
R. J.
,
Erichsen
,
D. A.
,
Rege
,
A.
, and
Linder
,
V.
,
1999
, “
Vascular remodeling in response to altered blood flow is mediated by fibroblast growth factor-2
,”
Circ. Res.
,
84
, pp.
323
328
.
32.
Tronc
,
F.
,
Mallat
,
Z.
,
Lehoux
,
S.
,
Wassef
,
M.
,
Esposito
,
B.
, and
Tedgui
,
A.
,
2000
, “
Role of matrix metalloproteinases in blood flow-induce arterial enlargement: Interaction with NO
,”
Arterioscler., Thromb., Vasc. Biol.
,
20
, pp.
e120–e126
e120–e126
.
33.
Langille, B. L., 1995, “Blood flow-induced remodeling of that arterial wall,” In: Flow-Dependent Regulation of Vascular Function (Beven JA, G Kaley, GM Rubanyi, eds.) Oxford University Press, Oxford.
34.
Schwartz
,
S. M.
,
Heimark
,
R. L.
, and
Majesky
,
M. W.
,
1990
, “
Developmental mechanisms underlying pathology of arteries
,”
Physiol. Rev.
,
70
, pp.
1177
1209
.
35.
Langille
,
B. L.
,
1993
, “
Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix
,”
J. Cardiovasc. Pharmacol.
,
21
, pp.
S11–S17
S11–S17
.
36.
Roy
,
P.
,
Petroll
,
W. M.
,
Chuong
,
C. J.
,
Cavahagh
,
H. D.
, and
Jester
,
J. V.
,
1999
, “
Effect of cell migration on the maintenance of tension on a collagen matrix
,”
Ann. Biomed. Eng.
,
27
, pp.
721
730
.
37.
Zarins
,
C. K.
,
Zatina
,
M. A.
,
Giddens
,
D. P.
,
Ku
,
D. N.
, and
Glagov
,
S.
,
1987
, “
Shear stress regulation of artery lumen diameter in experimental atherogenesis
,”
J. Vasc. Surg.
,
5
, pp.
413
420
.
38.
Masuda
,
H.
,
Zhuang
,
Y-J.
,
Singh
,
T. M.
,
Kawamura
,
K.
,
Murakami
,
M.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1999
, “
Adaptive remodeling of the internal elastic lamina and endothelial lining during flow-induced arterial enlargement
,”
Arterioscler., Thromb., Vasc. Biol.
,
19
, pp.
2298
2307
.
39.
Brownlee
,
R. D.
, and
Langille
,
B. L.
,
1991
, “
Arterial adaptations to altered blood flow
,”
Can. J. Physiol. Pharmacol.
,
69
, pp.
978
983
.
40.
Harmon
,
K. J.
,
Couper
,
L. L.
, and
Lindner
,
V.
,
2000
, “
Strain-dependent vascular remodeling phenotypes in inbred mice
,”
Am. J. Pathol.
,
156
, pp.
1741
1748
.
41.
Ibrahim
,
J.
,
Miyashiro
,
J. K.
, and
Berk
,
B. C.
,
2003
, “
Shear stress is differentially regulated among inbred rat strains
,”
Circ. Res.
,
92
, pp.
1001
1009
.
You do not currently have access to this content.