Forward dynamic simulations of a toe-rise task were developed to explore the outcomes of plantar fasciotomy, a surgery commonly performed to relieve heel pain. The specific objectives of this study were to develop such a simulation, validate its predictions, and simulate rising on toes using a model from which the plantar fascia had been removed. Root-mean squared differences between the intact model and measurements of healthy subjects were found to be 0.009 body weights (BW) and 0.055 BW for the horizontal and vertical ground reaction forces and 7.1 mm, 11.3 mm, and 0.48 deg for the horizontal, vertical and rotational positions of the pelvis. Simulated plantar fasciotomy increased passive arch torques by 7.4%, increased metatarsal head contact forces by 18%, and resulted in greater toe flexor activity. These simulations may explain the mechanisms behind plantar fasciotomy complications when patients perform activities that require loading of the plantarflexors and the longitudinal arch.

1.
Hicks
,
J. H.
,
1954
, “
The Mechanics of the Foot. II. The Plantar Aponeurosis and the Arch
,”
J. Anat.
,
88
, pp.
25
30
.
2.
Ker
,
R. F.
,
Bennett
,
M. B.
,
Bibby
,
S. R.
,
Kester
,
R. C.
, and
McN.
,
A. R.
,
1987
, “
The Spring in the Arch of the Human Foot
,”
Nature (London)
,
325
, pp.
147
149
.
3.
Kogler
,
G. F.
,
Veer
,
F. B.
,
Verhulst
,
S. J.
,
Solomonidis
,
S. E.
, and
Paul
,
J. P.
,
2001
, “
The Effect of Heel Elevation on Strain within the Plantar Aponeurosis: In Vitro Study
,”
Foot Ankle Int.
,
22
, pp.
433
439
.
4.
Carlson
,
R. E.
,
Fleming
,
L. L.
, and
Hutton
,
W. C.
,
2000
, “
The Biomechanical Relationship between the Tendoachilles, Plantar Fascia and Metatarsophalangeal Joint Dorsiflexion Angle
,”
Foot Ankle Int.
,
21
, pp.
18
25
.
5.
Kitaoka
,
H. B.
,
Luo
,
Z. P.
, and
An
,
K. N.
,
1997
, “
Mechanical Behavior of the Foot and Ankle after Plantar Fascia Release in the Unstable Foot
,”
Foot Ankle Int.
,
18
, pp.
8
15
.
6.
Sharkey
,
N. A.
,
Ferris
,
L.
, and
Donahue
,
S. W.
,
1998
, “
Biomechanical Consequences of Plantar Fascial Release or Rupture During Gait: Part I—Disruptions in Longitudinal Arch Conformation
,”
Foot Ankle Int.
,
19
, pp.
812
820
.
7.
Sharkey
,
N. A.
,
Donahue
,
S. W.
, and
Ferris
,
L.
,
1999
, “
Biomechanical Consequences of Plantar Fascial Release or Rupture During Gait. Part II: Alterations in Forefoot Loading
,”
Foot Ankle Int.
,
20
, pp.
86
96
.
8.
Hamel
,
A. J.
,
Donahue
,
S. W.
, and
Sharkey
,
N. A.
,
2001
, “
Contributions of Active and Passive Toe Flexion to Forefoot Loading
,”
Clin. Orthop. Relat. Res.
,
393
, pp.
326
334
.
9.
Donahue
,
S. W.
, and
Sharkey
,
N. A.
,
1999
, “
Strains in the Metatarsals During the Stance Phase of Gait: Implications for Stress Fractures
,”
J. Bone Jt. Surg.
,
81-A
, pp.
1236
1244
.
10.
Scott
,
S. H.
, and
Winter
,
D. A.
,
1993
, “
Biomechanical Model of the Human Foot: Kinematics and Kinetics During the Stance Phase of Walking
,”
J. Biomech.
,
26
, pp.
1091
1104
.
11.
Gerritsen
,
K. G. M.
,
Van den Bogert
,
A. J.
, and
Nigg
,
B. M.
,
1995
, “
Direct Dynamics Simulation of the Impact Phase in Heel-Toe Running
,”
J. Biomech.
,
28
, pp.
661
668
.
12.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 1999, “A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions,” Computer Methods in Biomechanics and Biomedical Engineering, 2, pp. 201–231.
13.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
Van Den Bogert
,
A. J.
, 2000, “A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running,” Computer Methods in Biomechanics and Biomedical Engineering, 3, pp. 321–334.
14.
Gilchrist
,
L. A.
, and
Winter
,
D. A.
,
1996
, “
A Two-Part, Viscoelastic Foot Model for Use in Gait Simulations
,”
J. Biomech.
,
29
, pp.
795
798
.
15.
Gefen
,
A.
,
2002
, “
Stress Analysis of the Standing Foot Following Surgical Plantar Fascia Release
,”
J. Biomech.
,
35
, pp.
629
637
.
16.
Kim
,
W.
, and
Voloshin
,
A. S.
,
1995
, “
Role of Plantar Fascia in the Load Bearing Capacity of the Human Foot
,”
J. Biomech.
,
28
, pp.
1025
1033
.
17.
Simkin
,
A.
, and
Leichter
,
I.
,
1990
, “
Role of the Calcaneal Inclination in the Energy Storage Capacity of the Human Foot - a Biomechanical Model
,”
Med. Biol. Eng. Comput.
,
28
, pp.
149
152
.
18.
Arangio
,
G. A.
,
Chen
,
C.
, and
Salathe
,
E. P.
,
1998
, “
Effect of Varying Arch Height with and without the Plantar Fascia on the Mechanical Properties of the Foot
,”
Foot Ankle Int.
,
19
, pp.
705
709
.
19.
Lester
,
D. K.
, and
Buchanan
,
J. R.
,
1984
, “
Surgical Treatment of Plantar Fasciitis
,”
Clin. Orthop.
,
106
, pp.
202
204
.
20.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
, pp.
757
766
.
21.
Nigg, B. M. and Herzog, W., 1994, Biomechanics of the Musculo-Skeletal System, John Wiley & Sons, West Sussex, England.
22.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
CRC Critical Reviews in Biomedical Engineering
,
17
, pp.
359
411
.
23.
Schutte, L. M., 1992, “Using Musculoskeletal Models to Explore Strategies for Improving Performance in Electrical Stimulation-Induced Leg Cycle Ergometry,” Ph.D. Dissertation, Stanford University, Stanford, CA.
24.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
,
1997
, “
Muscle Coordination of Maximum-Speed Pedaling
,”
J. Biomech.
,
30
, pp.
595
602
.
25.
Winters
,
J. M.
, and
Stark
,
L.
,
1988
, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
,
21
, pp.
1027
1041
.
26.
Delp, S. L., 1990, “Surgery Simulation: A Computer Graphics System to Analyze and Design Musculoskeletal Reconstructions of the Lower Limb,” Ph.D. Dissertation, Stanford University, Stanford, CA.
27.
Delp
,
S. L.
, and
Loan
,
J. P.
,
1995
, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comput. Biol. Med.
,
25
, pp.
21
34
.
28.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems
,”
J. Biomech. Eng.
,
114
, pp.
450
460
.
29.
Pandy
,
M. G.
,
Garner
,
B. A.
, and
Anderson
,
F. C.
,
1995
, “
Optimal Control of Non-Ballistic Muscular Movements: A Constraint-Based Performance Criterion for Rising from a Chair
,”
J. Biomech. Eng.
,
117
, pp.
15
26
.
30.
Schittkowski
,
K.
,
1986
, “
NLPQL: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems
,”
Ann. Operat. Res.
,
5
, pp.
485
500
.
31.
Anderson
,
F. C.
,
Ziegler
,
J. M.
,
Pandy
,
M. G.
, and
Whalen
,
R. T.
,
1995
, “
Application of High-Performance Computing to Numerical Simulation of Human Movement
,”
J. Biomech. Eng.
,
117
, pp.
155
157
.
32.
Cappozzo
,
A.
,
Catani
,
F.
,
Della Croce
,
U.
, and
Leardini
,
A.
,
1995
, “
Position and Orientation in Space of Bones During Movement: Anatomical Frame Definition and Determination
,”
Clin. Biomech. (Los Angel. Calif.)
,
10
, pp.
171
178
.
33.
So¨derkvist
,
I.
, and
A.
,
W. P.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
, pp.
1473
1477
.
34.
Kaplan
,
M. L.
, and
Heegaard
,
J. H.
,
2001
, “
Predictive Algorithms for Neuromuscular Control of Human Locomotion
,”
J. Biomech.
,
34
, pp.
1077
1083
.
35.
Pontious
,
J.
,
Flanigan
,
K. P.
, and
Hillstrom
,
H. J.
,
1996
, “
Role of the Plantar Fascia in Digital Stabilization
,”
J. Am. Podiatr Med. Assoc.
,
86
, pp.
43
47
.
36.
Daly
,
P. J.
,
Kitaoka
,
H. B.
, and
Chao
,
E. Y. S.
,
1992
, “
Plantar Fasciotomy for Intractable Plantar Fascitis: Clinical Results and Biomechanical Evaluation
,”
Foot Ankle Int.
,
13
, pp.
188
195
.
You do not currently have access to this content.