The quasi-linear viscoelastic (QLV) model was applied to incremental stress-relaxation tests and an expression for the stress was derived for each step. This expression was used to compare two methods for normalizing stress data prior to estimating QLV parameters. The first and commonly used normalization method was shown to be strain-dependent. Thus, a second normalization method was proposed and shown to be strain-independent and more sensitive to QLV time constants. These analytical results agreed with representative tendon data. Therefore, this method for normalizing stress data was proposed for future studies of incremental stress-relaxation, or whenever comparing stress-relaxation at different strains.

1.
Fung, Y., 1993, “Bioviscoelastic Solids,” In: Biomechanics: Mechanical Properties of Living Tissues, pp. 242–320, Springer-Verlag, New York, NY.
2.
Funk
,
J. R.
,
Hall
,
G. W.
,
Crandall
,
J. R.
, and
Pilkey
,
W. D.
,
2000
, “
Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments
,”
J. Biomech. Eng.
,
122
(
1
), pp.
15
22
.
3.
Lam
,
T. C.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1993
, “
Changes in the Cyclic and Static Relaxations of the Rabbit Medial Collateral Ligament Complex During Maturation
,”
J. Biomech.
,
26
, pp.
9
17
.
4.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
, “
Effect of Fiber Orientation and Strain-Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
J. Biomech. Eng.
,
125
(
5
), pp.
628
638
.
5.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
, pp.
908
914
.
6.
Robinson, P. S., Lin, T. W., Reynolds, P. R., Derwin, K. A., Iozzo, R. V., and Soslowsky, L. J., “Strain Rate Sensitive Mechanical Properties of Tendon Fascicles From Mice With Genetically Engineered Alterations in Collgen and Decorin,” J. Biomech. Eng., in review.
7.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
J. Biomech. Eng.
,
103
(
4
), pp.
293
298
.
8.
Wren
,
T. A.
,
Yerby
,
S. A.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
,
2001
, “
Mechanical Properties of the Human Achilles Tendon
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
3
), pp.
245
51
.
9.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
, pp.
379
392
.
10.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
T. P.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
,
1999
, “
Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
,
17
(
4
), pp.
503
508
.
11.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
J. Biomech. Eng.
,
123
, pp.
256
263
.
12.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
J. Biomed. Eng.
,
122
, pp.
189
195
.
13.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
14.
Elliott, D. M., Robinson, P. S., Gimbel, J. A., Sarver, J., Abboud, J. A., Iozzo, R. V., and Soslowsky, L. J., “Effect of Altered Matrix Proteins on Quasi-Linear Viscoelastic Properties in Transgenic Mouse Tail Tendons,” Ann. Biomed. Eng., in review.
15.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
,
2002
, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
J. Biomech. Eng.
,
124
(
1
), pp.
72
77
.
16.
Weiss
,
J. A.
, and
Gardiner
,
J. C.
,
2001
, “
Computational Modeling of Ligament Mechanics
,”
Crit. Rev. Biomed. Eng.
,
29
(
3
), pp.
303
371
.
17.
Woo
,
S. L. Y.
,
Johnson
,
G. A.
, and
Smith
,
B. A.
,
1993
, “
Mathematical Modeling of Ligaments and Tendons
,”
J. Biomech. Eng.
,
115
, pp.
468
473
.
18.
Fung
,
Y.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.
19.
Haut
,
R. C.
, and
Little
,
R. W.
,
1972
, “
A Constitutive Equation for Collagen Fibers
,”
J. Biomech.
,
5
, pp.
423
430
.
20.
Puso
,
M. A.
, and
Weiss
,
J. A.
,
1998
, “
Finite-Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
J. Biomech. Eng.
,
120
, pp.
62
70
.
21.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N.-Y.
, and
Woo
,
S. L.-Y.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
,
12
, pp.
796
803
.
22.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.
,
1993
, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
(
4–5
), pp.
447
452
.
23.
Pradas
,
M. M.
, and
Calleja
,
R. D.
,
1990
, “
Nonlinear Viscoelastic Behavior of the Flexor Tendon of the Human Hand
,”
J. Biomech.
,
23
, pp.
773
781
.
24.
Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M., and Soslowsky, L. J., “Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site,” J. Orthop. Res., 32767.
25.
Bonifasi-Lista
,
C.
,
Lake
,
S.
,
Ellis
,
B.
,
Rosenberg
,
T.
, and
Weiss
,
J. A.
,
2002
, “
Strain- and Rate-Dependent Viscoleastic Properties of Human MCL in Tension
,”
Transactions of the Orthopaedic Research Society
,
27
, p.
609
609
.
26.
Thornton
,
G. M.
,
Oliynyk
,
A.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1997
, “
Ligament Creep Cannot Be Predicted From Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament
,”
J. Orthop. Res.
,
15
(
5
), pp.
652
656
.
27.
Dortmans
,
L. J.
,
Sauren
,
A. A.
, and
Rousseau
,
E. P.
,
1984
, “
Parameter Estimation Using the Quasi-Linear Viscoelastic Model Proposed by Fung
,”
J. Biomech. Eng.
,
106
(
3
), pp.
198
203
.
28.
Myers
,
B.
,
McElhaney
,
J.
,
Nightingale
,
R.
, and
Doherty
,
B.
,
1991
, “
Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects
,”
ASME Advances in Bioengineering
,
BED-20
, pp.
139
142
.
29.
Nigul
,
I.
, and
Nigul
,
U.
,
1987
, “
On Algorithms of Evaluation of Fung’s Relaxation Function Parameters
,”
J. Biomech.
,
20
(
4
), pp.
343
352
.
30.
Sauren
,
A. A.
, and
Rousseau
,
E. P.
,
1983
, “
A Concise Sensitivity Analysis of the Quasi-Linear Viscoelastic Model Proposed by Fung
,”
J. Biomech. Eng.
,
105
(
1
), pp.
92
95
.
31.
Hewitt
,
J.
,
Guilak
,
F.
,
Glisson
,
R.
, and
Vail
,
T. P.
,
2001
, “
Regional Material Properties of the Human Hip-Joint Capsule Ligaments
,”
J. Orthop. Res.
,
19
(
3
), pp.
359
64
.
32.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
,
2002
, “
Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension
,”
J. Biomech. Eng.
,
124
(
2
), pp.
223
228
.
33.
Roth
,
V.
, and
Mow
,
V. C.
,
1980
, “
Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age
,”
J. Bone Jt. Surg.
,
62A
(
7
), pp.
1102
1117
.
34.
Woo
,
S. L. Y.
,
Akeson
,
W. H.
, and
Jemmott
,
G. F.
,
1976
, “
Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension
,”
J. Biomech.
,
9
, pp.
785
791
.
35.
Fithian
,
D. C.
,
Zhu
,
W. B.
,
Ratcliffe
,
A.
,
Kelly
,
M. A.
,
Mow
,
B. C.
, and
Malinin
,
T. I.
,
1989
, “
Exponential Law Representation of Tensile Properties of Human Mensicus
,”
Proc. Inst. Mech. Eng.
,
pp.
85
90
.
36.
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, John Wiley & Sons, New York, NY.
37.
Scott
,
E. P.
, and
Saad
,
Z.
,
1993
, “
Estimation of Kinetic Parameters Associated With the Curing of Thermoset Resins; Theoretical Investigation
,”
Polym. Eng. Sci.
,
33
(
18
), pp.
1157
1164
.
38.
Pioletti
,
D. P.
, and
Rakotomanana
,
L. R.
,
2000
, “
On the Independence of Time and Strain Effects in the Stress Relaxation of Ligaments and Tendons
,”
J. Biomech.
,
33
, pp.
1729
1732
.
39.
Provenzano
,
P.
,
Lakes
,
R.
,
DT
,
C.
, and
Vanderby
,
R.
,
2002
, “
Application of Nonlinear Viscoelastic Models to Describe Ligament Behavior
,”
Biomechan Model Mechanobiol
,
1
, pp.
45
57
.
You do not currently have access to this content.