Abstract

In this study, a basic model is introduced to describe the biomechanical properties of the wood from the viewpoint of the composite structure of its cell wall. First, the mechanical interaction between the cellulose microfibril (CMF) as a bundle framework and the lignin-hemicellulose as a matrix (MT) skeleton in the secondary wall is formulated based on “the two phase approximation.” Thereafter, the origins of (1) tree growth stress, (2) shrinkage or swelling anisotropy of the wood, and (3) moisture dependency of the Young’s modulus of wood along the grain were simulated using the newly introduced model. Through the model formulation; (1) the behavior of the cellulose microfibril (CMF) and the matrix substance (MT) during cell wall maturation was estimated; (2) the moisture reactivity of each cell wall constituent was investigated; and (3) a realistic model of the fine composite structure of the matured cell wall was proposed. Thus, it is expected that the fine structure and internal property of each cell wall constituent can be estimated through the analyses of the macroscopic behaviors of wood based on the two phase approximation.

1.
Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San Francisco.
2.
Fung, Y. C., 1965, Foundation of Solid Mechanics, Prentice-Hall, Englewood Cliffs-NJ.
3.
Timoshenko, S. P. and Goodier, J. N., 1970, Theory of Elasticity, 3rd edition, McGraw-Hill Kogakusha, Tokyo.
4.
Bodig, J., and Jayne, B. A., 1982, Mechanics of Wood and Wood Composites, Van Nostrand Reinhold, New York.
5.
Guitard, D., 1987, Mecanique du Materiau Bois et Composites, Cepadues-Editions, Toulouse.
6.
Gibson, L. J. and Ashby, M. F., 1988, Cellular Solids. Structure and Properties, Pergamon Press, Oxford.
7.
Mark, R. E., 1967, Cell Wall Mechanics of Ttracheids, Yale University Press, New Haven.
8.
Preston, R. D., 1974, The Physical Biology of Plant Cell Walls, Chapman & Hall, London.
9.
Tsoumis, G., 1991, Science and Technology of Wood-Structure, Properties, Utilization, Van Nostrand Reinhold, New York.
10.
Barber
,
N. F.
, and
Meylan
,
B. A.
,
1964
, “
The Anisotropic Shrinkage of Wood. A Theoretical Model
,”
Holzforschung
,
18
, pp.
146
156
.
11.
Barrett
,
J. D.
,
Schniewind
,
A. P.
, and
Talor
,
R. I.
,
1972
, “
Theoretical Shrinkage Model for Wood Cell Wall
,”
Wood Sci.
,
4
, pp.
178
192
.
12.
Cave
,
I. D.
,
1972
, “
Swelling of a Fiber Reinforced Composite in Which the Matrix is Water Reactive
,”
Wood Sci. Technol.
,
6
, pp.
157
161
.
13.
Cave
,
I. D.
,
1972
, “
A Theory of Shrinkage of Wood
,”
Wood Sci. Technol.
,
2
, pp.
268
278
.
14.
Cave
,
I. D.
,
1978
, “
Modelling Moisture-Related Mechanical Properties of Wood. Part I. Properties of the Wood Constituents
,”
Wood Sci. Technol.
,
12
,
75
86
.
15.
Cave
,
I. D.
,
1978
, “
Modelling Moisture-Related Mechanical Properties of Wood. Part II. Computation of Properties of a Model of Wood and Comparison with Experimental Data
,”
Wood Sci. Technol.
,
12
,
127
139
.
16.
Barber
,
N. F.
,
1968
, “
A Theoretical Model of Shrinking Wood
,”
Holzforschung
,
22
, pp.
97
103
.
17.
Liang
,
C. Y.
,
Bassett
,
K. H.
,
McGiness
,
E. A.
, and
Marchessault
,
R. H.
,
1960
, “
Infrared Spectra of Crystalline Polysaccharides. VII. Thin Wood Sections
,”
Tappi J.
,
43
, pp.
1017
1024
.
18.
Fushitani
,
M.
,
1973
, “
Study of Molecular Orientation in Wood by Fluorescence Method
,”
Mokuzai Gakkaishi
,
19
, pp.
135
140
.
19.
Cousins
,
W. J.
,
1978
, “
Young’s Modulus of Hemicellulose as Related to Moisture Content
,”
Wood Sci. Technol.
,
12
, pp.
161
167
.
20.
Salmen
,
L.
, and
de Ruvo
,
A.
,
1985
, “
A Model of the Prediction of Fiber Elasticity
,”
Wood Fiber Sci.
,
17
, pp.
336
350
.
21.
Koponen
,
S.
,
Toratti
,
T.
, and
Kanerva
,
P.
,
1989
, “
Modelling Longitudinal Elastic and Shrinkage Properties of Wood
,”
Wood Sci. Technol.
,
23
, pp.
55
63
.
22.
Salmen, L., 2000, “Structure—Property Relations for Wood; from the Cell-Wall Polymeric Arrangement to the Macroscopic Behavior,” In Proc. 3rd Plant Biomechanics Conf., Freiburg-Badenweiler, pp. 452–462.
23.
Yamamoto
,
H.
,
1999
, “
A Model of Anisotropic Swelling and Shrinking Process of Wood. Part 1. Generalization of Barber’s Wood Fiber Model
,”
Wood Sci. Technol.
,
33
, pp.
311
325
.
24.
Yamamoto
,
H.
, and
Kojima
,
Y.
,
2002
, “
Properties of the Cell Wall Constituents in Relation to the Longitudinal Elasticity of Wood. Part 1. Formulation of the Longitudinal Elasticity of an Isolated Wood Fiber
,”
Wood Sci. Technol.
,
36
, pp.
55
74
.
25.
Archer, R. R., 1986, Growth Stresses and Strain in Trees, Springer-Verlag, New York.
26.
Timell, T. E., 1986, Compression Wood in Gymnosperm, Springer-Verlag, Berlin.
27.
Okuyama
,
T.
,
Yamamoto
,
H.
,
Yoshida
,
M.
,
Hattori
,
Y.
, and
Archer
,
R. R.
,
1994
, “
Growth Stresses in Tension Wood: Role of Microfibrils and Lignification
,”
Annales des Sciences Forestieres
,
51
, pp.
291
300
.
28.
Terashima
,
N.
,
1990
, “
A New Mechanism for Formation of a Structurally Ordered Protolignin Macromolecule in the Cell Wall of Tree Xylem
,”
J. Pulp Pap. Sci.
,
16
, pp.
J150–J155
J150–J155
.
29.
Terashima
,
N.
, and
Fukushima
,
K.
,
1988
, “
Heterogeneity in Formation of Lignin-XI: An Autoradiographic Study of the Heterogeneous Formation and Structure of Pine Lignin
,”
Wood Sci. Technol.
,
22
, pp.
259
270
.
30.
Takabe
,
K.
,
Miyauchi
,
T.
, and
Fukazawa
,
K.
,
1992
, “
Cell Wall Formation of Compression Wood in Todo Fir (Abies saccharinensis) 1. Deposition of Polysaccharides
,”
IAWA Bull.
,
13
, pp.
283
296
.
31.
Yamamoto
,
H.
,
Sassus
,
F.
,
Ninomiya
,
M.
, and
Gril
,
J.
,
2001
, “
A Model of Anisotropic Swelling and Shrinking Process of Wood. Part 2. A Simulation of Shrinking Wood
,”
Wood Sci. Technol.
,
35
, pp.
167
181
.
32.
Sakurada
,
I.
,
Nukushina
,
Y.
, and
Ito
,
T.
,
1962
, “
Experimental Determination of the Elastic Modulus of Crystalline Regions in Oriented Polymers
,”
J. Polymer Sci.
,
57
, pp.
651
660
.
33.
Srinivasan
,
P. S.
,
1941
, “
The Elastic Properties of Molluscan Shells
,”
Quart. J. Indian Inst. Sci.
,
4
, pp.
189
221
.
34.
Boyd
,
J. D.
,
1972
, “
Tree Growth Stresses. V. Evidence of an Origin in Differenciation and Lignification
,”
Wood Sci. Technol.
,
6
, pp.
251
262
.
35.
Bamber
,
R. K.
,
1987
, “
The Origin of Growth Stresses. A Rebutal
,”
IAWA Bull.
,
8
, pp.
80
84
.
36.
Wardrop, A. B., 1965, “The Formation and Function of Reaction Wood,” Cellular Ultrastructure of Woody Plants, W. A. COTE, Jr. eds., Syracuse University Press, New York, pp. 373–390.
37.
Stockmann
,
V. E.
,
1972
, “
Developing a Hypothesis: Native Cellulose Elementary Fibrils Are Formed with Metastable Structure
,”
Biopolymers
,
11
, pp.
251
270
.
38.
Awano
,
T.
,
Takabe
,
K.
,
Fujita
,
M.
, and
Daniel
,
G.
,
2000
, “
Deposition of Glucuronoxylans on the Secondary Cell Wall of Japanese beech as Observed by Immuno-scanning Electron Microscopy
,”
Protoplasma
,
212
, pp.
72
79
.
39.
Skaar, C., 1988, Wood-Water Relations, Springer-Verlag, Berlin.
40.
Stamm, A., J., 1964, Wood and Cellulose Science, Ronald Press, New York.
41.
Cousins
,
W. J.
,
1976
, “
Elastic Modulus of Lignin as Related to Moisture Content
,”
Wood Sci. Technol.
,
10
, pp.
9
17
.
42.
Meylan
,
B. A.
,
1968
, “
Cause of High Longitudinal Shrinkage of Wood
,”
Forest Products. J.
,
18
, pp.
75
78
.
43.
Kollmann
,
F. F. F.
, and
KRECH
,
H.
,
1960
, “
Dynamic Measurement of Damping Capacity and Elastic Properties of Wood
,”
Holz Roh-Werkst.
,
18
, pp.
41
54
.
44.
Salmen, L., 1982, Temperature and Water Induced Softening Behavior of Wood Fiber Based Materials, PhD. Thesis, The Royal Institute of Technology, Stockholm.
45.
Kojima, Y., Yamamoto, H., “Properties of the Cell Wall Constituents in Relation to the Longitudinal Elasticity of Wood Part 2. Origin of the Moisture Dependency of the Longitudinal Elasticity of Wood,” Wood Sci. Technol., in contribution.
46.
Salmen
,
L.
,
Kolseth
,
P.
, and
de Ruvo
,
A.
,
1985
, “
Modeling the Softening Behavior of Wood Fibres
,”
J. Pulp Pap. Sci.
,
11
, pp.
J102–J107
J102–J107
.
47.
Tokoh
,
T.
,
Takabe
,
K.
,
Fujita
,
M.
, and
Saiki
,
H.
,
1998
, “
Cellulose Synthesized by Acetobacter xylinum in the Presence of Acetyl Glucomannan
,”
Cellulose
,
5
, pp.
249
261
.
You do not currently have access to this content.