We modified an irreducibly simple model of passive dynamic walking to walk on level ground, and used it to study the energetics of walking and the preferred relationship between speed and step length in humans. Powered walking was explored using an impulse applied at toe-off immediately before heel strike, and a torque applied on the stance leg. Although both methods can supply energy through mechanical work on the center of mass, the toe-off impulse is four times less costly because it decreases the collision loss at heel strike. We also studied the use of a hip torque on the swing leg that tunes its frequency but adds no propulsive energy to gait. This spring-like actuation can further reduce the collision loss at heel strike, improving walking energetics. An idealized model yields a set of simple power laws relating the toe-off impulses and effective spring constant to the speed and step length of the corresponding gait. Simulations incorporating nonlinear equations of motion and more realistic inertial parameters show that these power laws apply to more complex models as well.

1.
Mochon
,
S.
, and
McMahon
,
T. A.
,
1980
, “
Ballistic Walking: An Improved Model
,”
Math. Biosci.
,
52
, pp.
241
260
.
2.
Alexander
,
R. M.
,
1995
, “
Simple Models of Human Motion
,”
Appl. Mech. Rev.
,
48
, pp.
461
469
.
3.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
, pp.
68
82
.
4.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
, pp.
281
288
.
5.
Garcia
,
M.
,
Chatterjee
,
A.
, and
Ruina
,
A.
,
2000
, “
Efficiency, Speed, and Scaling of Passive Dynamic Walking
,”
Dynamics and Stability of Systems
,
15
, pp.
75
100
.
6.
McGeer, T., 1991, “Passive Dynamic Biped Catalogue 1991” in Proc. 2nd International Symposium of Experimental Robotics, R. Chatila, ed., New York: Springer-Verlag.
7.
Winter, D. A., 1991, The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed., Waterloo, Canada, Waterloo Biomechanics.
8.
Kuo, A. D., 2000, “A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship,” ASME J. Biomech. Eng., in press.
9.
Alexander, R. M., 1976, “Mechanics of Bipedal Locomotion” in Perspectives in Experimental Biology 1, P. S. Davies, ed., Oxford, Pergamon, pp. 493–504.
10.
Cavagna
,
G. A.
, and
Margaria
,
R.
,
1966
, “
Mechanics of Walking
,”
J. Appl. Physiol.
,
21
, pp.
271
278
.
11.
Cavagna
,
G. A.
,
Thys
,
H.
, and
Zamboni
,
A.
,
1976
, “
The Sources of External Work in Level Walking and Running
,”
Journal of Physiology
,
262
, pp.
639
657
.
12.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
,
1977
, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol.
,
233
, pp.
243
261
.
13.
Willems
,
P. A.
,
Cavagna
,
G. A.
, and
Heglund
,
N. C.
,
1995
, “
External, Internal, and Total Work in Human Locomotion
,”
J. Exp. Biol.
,
198
, pp.
379
393
.
14.
Donelan, J. M., Kram, R., and Kuo, A. D., 2000. “Simultaneous Positive and Negative External Mechanical Work in Human Walking,” J. Biomech., (in press).
15.
Kuo
,
A. D.
,
1999
, “
Stabilization of Lateral Motion in Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
18
, pp.
917
930
.
You do not currently have access to this content.