Joint moment estimation using the traditional inverse dynamics analysis presents two challenging problems, which limit its reliability. First, the quality of the computed moments depends directly on unreliable estimates of the segment accelerations obtained numerically by differentiating noisy marker measurements. Second, the representation of joint moments from combined video and force plate measurements belongs to a class of ill-posed problems, which does not possess a unique solution. This paper presents a well-posed representation derived from an embedded constraint equation. The proposed method, referred to as the embedded constraint representation (ECR), provides unique moment estimates, which satisfy all measurement constraints and boundary conditions and require fewer acceleration components than the traditional inverse dynamics method. Specifically, for an n-segment open chain planar system, the ECR requires n3 acceleration components as compared to 3n1 components required by the traditional (from ground up) inverse dynamics analysis. Based on a simulated experiment using a simple three-segment model, the precision of the ECR is evaluated at different noise levels and compared to the traditional inverse dynamics technique. At the lowest noise levels, the inverse dynamics method is up to 50 percent more accurate while at the highest noise levels the ECR method is up to 100 percent more accurate. The ECR results over the entire range of noise levels reveals an average improvement on the order 20 percent in estimating the moments distal to the force plate and no significant improvement in estimating moments proximal to the force plate. The new method is particularly advantageous in a combined video, force plate, and accelerometery sensing strategy. [S0148-0731(00)01904-X]

1.
Eng
,
J. J.
,
Winter
,
D. A.
, and
Patla
,
A. E.
,
1997
, “
Intralimb Dynamics Simplify Reactive Control Strategies During Locomotion
,”
J. Biomech.
,
30
, No.
6
, pp.
581
588
.
2.
Winter
,
D. A.
, and
Eng
,
P.
,
1995
, “
Kinetics: Our Window Into the Goals and Strategies of the Central Nervous System
,”
Behav. Brain Res.
,
67
, No.
2
, pp.
111
120
.
3.
Winter
,
D. A.
,
1995
, “
Knowledge Base for Diagnostic Gait Assessments
,”
Med. Prog. Technol.
,
19
, No.
2
, pp.
61
81
.
4.
Rohlmann
,
A.
,
Bergmann
,
G.
, and
Graichen
,
F.
,
1997
, “
Loads on an Internal Spinal Fixation Device
,”
J. Biomech.
,
30
, No.
1
, pp.
41
47
.
5.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
,
1997
, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
,
26
, No.
8
, pp.
969
990
.
6.
Winter, D. A., 1990, Biomechanics and Motor Control of Human Movement, Wiley-Interscience, New York.
7.
Levine
,
W. S.
,
Zajac
,
F. E.
,
Belzer
,
M. R.
, and
Zomlefer
,
M. R.
,
1983
, “
Ankle Controls That Produce a Maximal Vertical Jump When Other Joints Are Locked
,”
IEEE Trans. Autom. Control
,
28
, No.
11
, pp.
1008
1016
.
8.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
IEEE Trans. Autom. Control
,
36
, No.
3
, pp.
322
332
.
9.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
,
114
, pp.
450
460
.
10.
Pandy
,
M. G.
,
Garner
,
B. A.
, and
Anderson
,
F. C.
,
1995
, “
Optimal Control of Non-ballistic Muscular Movements: A Constraint-Based Performance Criterion for Rising From a Chair
,”
ASME J. Biomech. Eng.
,
117
, pp.
15
26
.
11.
Chao
,
E. Y.
, and
Rim
,
K.
,
1973
, “
Application of Optimization Principles in Determining the Applied Moments in Human Leg Joints During Gait
,”
J. Biomech.
,
6
, pp.
497
510
.
12.
Runge
,
C. F.
,
Zajac
,
F. E.
,
Allum
,
J.
,
Risher
,
D. W.
,
Bryson
,
A. E.
, and
Honegger
,
F.
,
1995
, “
Estimating Net Joint Torques From Kinesiological Data Using Optimal Linear System Theory
,”
IEEE Trans. Biomed. Eng.
,
42
, No.
12
, pp.
1158
1164
.
13.
Hatze
,
H.
,
1981
, “
The Use of Optimally Regularized Fourier Series for Estimating Higher-Order Derivatives of Noisy Biomechanical Data
,”
J. Biomech.
,
14
, pp.
13
18
.
14.
Cullum
,
J.
,
1971
, “
Numerical Differentiation and Regularization
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
8
, No.
2
, pp.
254
265
.
15.
Anderson
,
R.
, and
Bloomfield
,
P.
,
1974
, “
Numerical Differentiation Procedures for Non-exact Data
,”
Numer. Math.
,
22
, pp.
157
182
.
16.
Dohrmann
,
C. R.
,
Busby
,
H. R.
, and
Trujillo
,
D. M.
,
1988
, “
Smoothing Noisy Data Using Dynamic Programming and Generalized Cross-Validation
,”
ASME J. Biomech. Eng.
,
110
, pp.
37
41
.
17.
Woltring
,
H. J.
,
1986
, “
A Fortran Package for Generalized, Cross-Validatory Spline Smoothing and Differentiaton
,”
Adv. Eng. Softw.
,
8
, No.
2
, pp.
104
113
.
18.
Simons
,
W.
, and
Yang
,
K. H.
,
1991
, “
Differentiation of Human Motion Data Using Combined Spline and Least Squares Concepts
,”
ASME J. Biomech. Eng.
,
113
, pp.
348
351
.
19.
Giakas
,
G.
, and
Baltzopoulos
,
V.
,
1997
, “
Optimal Digital Filtering Requires a Different Cut-off Frequency Strategy for the Determination of the Higher Derivatives
,”
J. Biomech.
,
30
, No.
8
, pp.
851
855
.
20.
Kuo
,
A. D.
,
1998
, “
A Least Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations
,”
ASME J. Biomech. Eng.
,
120
, No.
1
, pp.
148
159
.
21.
Wu
,
G.
, and
Ladin
,
Z.
,
1996
, “
The Study of Kinematic Transients in Locomotion Using the Integrated Kinematic Sensor
,”
IEEE Trans. Rehabil. Eng.
,
4
, No.
3
, pp.
193
200
.
22.
Wu
,
G.
, and
Ladin
,
Z.
,
1993
, “
The Kinematometer—an Integrated Kinematic Sensor for Kinesiological Measurements
,”
IEEE Trans. Mil. Electron.
,
115
, pp.
53
62
.
23.
Hemami
,
H.
, and
Wyman
,
B.
,
1979
, “
Modeling and Control of Constrained Dynamic Systems With Application to Biped Locomotion in the Frontal Plane
,”
IEEE Trans. Autom. Control
,
24
, pp.
526
535
.
24.
Hemami
,
H.
,
1980
, “
A Feedback On-off Model of Biped Dynamics
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-10
, pp.
541
548
.
25.
Hemami
,
H.
, and
Zheng
,
Y. F.
,
1984
, “
Dynamics and Control of Motion on the Ground and in the Air With Applications to Biped Robots
,”
J. Robo. Syst.
,
1
, No.
1
, pp.
101
116
.
26.
Kane, T. R., 1985, Dynamics: Theory and Applications, McGraw-Hill, New York.
27.
Langer
,
F. D.
,
Hemami
,
H.
, and
Brown
,
D. B.
,
1987
, “
Constraint Forces in Holonomic Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
62
, pp.
255
274
.
28.
Dariush
,
B.
,
Parnianpour
,
M.
, and
Hemami
,
H.
,
1998
, “
Stability and a Control Strategy of a Multi-link Musculoskeletal Model With Applications in FES
,”
IEEE Trans. Biomed. Eng.
,
45
, pp.
3
14
.
You do not currently have access to this content.