Glenoid component loosening is the dominant cause of failure in total shoulder arthroplasty. It is presumed that loosening in the glenoid is caused by high stresses in the cement layer. Several anchorage systems have been designed with the aim of reducing the loosening rate, the two major categories being “keeled” fixation and “pegged” fixation. However, no three-dimensional finite element analysis has been performed to quantify the stresses in the cement or to compare the different glenoid prosthesis anchorage systems. The objective of this study was to determine the stresses in the cement layer and surrounding bone for glenoid replacement components. A three-dimensional model of the scapula was generated using CT data for geometry and material property definition. Keeled and pegged designs were inserted into the glenoid, surrounded by a 1-mm layer of bone cement. A 90 deg arm abduction load with a full muscle and joint load was applied, following van der Helm (1994). Deformations of the prosthesis, stresses in the cement, and stresses in the bone were calculated. Stresses were also calculated for a simulated case of rheumatoid arthritis (RA) in which bone properties were modified to reflect that condition. A maximum principal stress-based failure model was used to predict what quantity of the cement is at risk of failure at the levels of stress computed. The prediction is that 94 percent (pegged prosthesis) and 68 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival in normal bone. In RA bone, however, the situation is reversed where 86 percent (pegged prosthesis) and 99 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival. Bone stresses are shown to be not much affected by the prosthesis design, except at the tip of the central peg or keel. It is concluded that a “pegged” anchorage system is superior for normal bone, whereas a “keeled” anchorage system is superior for RA bone. [S0148-0731(00)01804-5]

1.
McCullagh
,
P. J. J.
,
1995
, “
Biomechanics and Design of Shoulder Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H
,
209
, pp.
207
213
.
2.
Wirth
,
M. A.
and
Rockwood
,
C. A.
,
1996
, “
Current Concepts Review: Complications of Total Shoulder Replacement Arthroplasty
,”
J. Bone Jt. Surg.
,
78A
, pp.
603
616
.
3.
Orr
,
T. E.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
,
1988
, “
Stress Analysis of Glenoid Component Designs
,”
Clin. Orthop. Relat. Res.
,
232
, pp.
217
224
.
4.
Friedman
,
R. J.
,
LaBerge
,
M.
,
Dooley
,
R. L.
, and
O’Hara
,
A. L.
,
1992
, “
Finite Element Modeling of the Glenoid Component: Effect of Design Parameters on Stress Distribution
,”
J. Shoulder Elbow Surg.
,
1
, pp.
261
270
.
5.
Orr, T. E., Wong, B. E., Maw, K., Ashmore, W. P., and Mason, M. D., 1997, “The Effect of Component Fixation Design on the Performance of Glenoid Prostheses,” 43rd Meeting ORS, San Francisco, p. 881.
6.
Lacroix
,
D.
and
Prendergast
,
P. J.
,
1997
, “
Stress Analysis of Glenoid Component Designs for Shoulder Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H
,
211
, pp.
467
474
.
7.
Stone
,
K. D.
,
Grabowski
,
J. J.
,
Cofield
,
R. H.
,
Morrey
,
B. F.
, and
An
,
K. A.
,
1999
, “
Stress Analyses of Glenoid Components in Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
8
, pp.
151
158
.
8.
Van der Helm
,
F. C. T.
,
1994
, “
Analysis of the Kinematic and Dynamic Behaviour of the Shoulder Mechanism
,”
J. Biomech.
,
27
, pp.
527
550
.
9.
Lacroix, D., Prendergast, P. J., Murray, R., McAlinden, S., and D’Arcy, E., 1997, “The Use of Quantitative Computed Tomography to Generate a Finite Element Model of the Scapula Bone,” in: Sustainable Technologies in Manufacturing Industries, J. Monaghan and C. G. Lyons, eds., pp. 257–262.
10.
Frich
,
L. H.
,
Jensen
,
N. C.
,
Odgaard
,
A.
,
Pedersen
,
C. M.
,
So̸jbjerg
,
J. O.
, and
Dalstra
,
M.
,
1997
, “
Bone Strength and Material Properties of the Glenoid
,”
J. Shoulder Elbow Surg.
,
6
, pp.
97
104
.
11.
Mansat
,
P.
,
Barea
,
C.
,
Hobatho
,
M. C.
,
Darmana
,
R.
, and
Mansat
,
M.
,
1998
, “
Anatomic Variation of the Mechanical Properties of the Glenoid
,”
J. Shoulder Elbow Surg.
,
7
, pp.
109
115
.
12.
Hvid
,
I.
,
Bentzen
,
S. M.
,
Linde
,
F.
,
Mosekilde
,
L.
, and
Pongsoitpetch
,
B.
,
1989
, “
X-Ray Quantitative Computed Tomography: The Relations to Physical Properties of Proximal Tibial Trabecular Bone Specimens
,”
J. Biomech.
,
22
, pp.
837
844
.
13.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
,
1988
, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
,
21
, pp.
155
168
.
14.
Schaffler
,
M. B.
, and
Burr
,
D. B.
,
1988
, “
Stiffness of Compact Bone: Effects of Porosity and Density
,”
J. Biomech.
,
21
, pp.
13
16
.
15.
Frich, L. H., 1994, “Strength and Structure of Glenoidal Bone,” doctoral thesis. A˚rhus University, Denmark.
16.
Dalstra, M., Frich, L. H., and Sneppen, O., 1996, “The Loss of Load-Bearing Capability in Rheumatoid Glenoids (Abstract),” Proc. 10th Conference of the ESB, p. 178.
17.
Williams, P. L., ed., 1995, Gray’s Anatomy, 38th ed., pp. 615–634.
18.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, 1985, p. 114.
19.
Pearl
,
M. L.
and
Lippitt
,
S. B.
,
1994
, “
Shoulder Arthroplasty With a Modular Prosthesis
,”
Tech. Orthopaed.
,
8
, No.
3
, pp.
151
162
.
20.
Krause
,
W.
,
Mathis
,
R. S.
, and
Grimes
,
L. W.
,
1988
, “
Fatigue Properties of Acrylic Bone Cement: S-N, P-N, and P-S-N Data
,”
J. Biomed. Mater. Res.
,
22
, pp.
221
244
.
21.
Murphy, B. P. and Prendergast, P. J., 2000, “On the Magnitude and Variability of the Fatigue Strength of Acrylic Bone Cement,” Int. J. Fatigue, submitted.
22.
Prendergast
,
P. J.
,
1997
, “
Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design
,”
Clin. Biomech.
,
12
, pp.
343
366
.
23.
Mallon
,
W. J.
,
Brown
,
H. R.
,
Vogler
, III,
J. B.
, and
Martinez
,
S.
,
1992
, “
Radiographic and Geometric Anatomy of the Scapula
,”
Clin. Orthop. Relat. Res.
,
277
, pp.
142
154
.
24.
Crawley
,
E. O.
,
1990
, “
In vivo Tissue Characterization Using Quantitative Computed Tomography: A Review
,”
J. Med. Eng. Technol.
,
14
, pp.
233
242
.
25.
Anglin
,
C.
,
Tolhurst
,
P.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
,
1999
, “
Glenoid Cancellous Bone Strength and Modulus
,”
J. Biomech.
,
32
, pp.
1091
1098
.
26.
Dalstra, M., 1993, “Biomechanical Aspects of the Pelvic Bone and Design Criteria for Acetabular Prostheses,” Ph.D. thesis, University of Nijmegen.
27.
Karduna
,
A. R.
,
Williams
,
G. R.
,
Iannotti
,
J. P.
, and
Williams
,
J. L.
,
1998
, “
Total Shoulder Arthroplasty: A Study of the Forces and Strains at the Glenoid Component
,”
J. Biomech. Eng.
,
120
, pp.
92
99
.
28.
Davies
,
J. P.
,
Burke
,
D. W.
,
O’Connor
,
D. O.
, and
Harris
,
W. H.
,
1987
, “
Comparison of the Fatigue Characteristics of Centrifuged and Uncentrifuged Simplex-P Bone Cement
,”
J. Orthop. Res.
,
5
, pp.
366
371
.
You do not currently have access to this content.