In this study, a finite element model of a vertebral body was used to study the load-bearing role of the two components (shell and core) under compression. The model of the vertebral body has the characteristic kidney shape transverse cross section with concave lateral surfaces and flat superior and inferior surfaces. A nonlinear unit cell based foam model was used for the trabecular core, where nonlinearity was introduced as coupled elastoplastic beam behavior of individual trabeculae. The advantage of the foam model is that architecture and material properties are separated, thus facilitating studies of the effects of architecture on the apparent behavior. Age-related changes in the trabecular architecture were considered in order to address the effects of osteoporosis on the load-sharing behavior. Stiffness changes with age (architecture and porosity changes) for the trabecular bone model were shown to follow trends in published experimental results. Elastic analyses showed that the relative contribution of the shell to the load-bearing ability of the vertebra decreases with increasing age and lateral wall curvature. Elasto-plastic (nonlinear) analyses showed that failure regions were concentrated in the upper posterior region of the vertebra in both the shell and core components. The ultimate load of the vertebral body model varied from 2800 N to 5600 N, depending on age (architecture and porosity of the trabecular core) and shell thickness. The model predictions lie within the range of experimental results. The results provide an understanding of the relative role of the core and shell in vertebral body mechanics and shed light on the yield and post-yield behavior of the vertebral body.

1.
Anistutz, H. C., and Sissons, H. A., 1969, “The structure of the vertebral spongiosa,” Journal of Bone and Joint Surgery, Vol. 51B, No. 3.
2.
Atkinson
P. J.
,
1967
, “
Variation in trabecular structure of vertebrae with age
,”
Calcified Tissue Research
, Vol.
1
, pp.
24
32
.
3.
Beaupre
G. S.
, and
Hayes
W. C.
,
1985
, “
Finite element analysis for a three-dimensional open-celled model for trabecular bone
,”
JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
, pp.
249
256
.
4.
Bell
G. H.
,
Dunbar
O.
,
Beck
J. S.
, and
Gibb
A.
,
1967
, “
Variations in strength of vertebrae with age and their relation to osteoporosis
,”
Calc. Tiss. Res.
, Vol.
1
, pp.
75
86
.
5.
Berry, J. L., Moran, J. M., Berg, W. S., and Steffee, A. D., 1987, “A morphometric study of human lumbar and selected thoracic vertebrac,” Spine, Vol. 12, No. 4.
6.
Burr, D. B., et al., 1994, “Morphological changes and stress redistribution in osteoporotic spine,” in: Spinal Disorders in Aging, H. Takashi, editor, Springer-Verlag, Tokyo.
7.
Choi, K., Ciarelli, M. J., and Goldstein, S. A., 1989, “The elastic modulus of trabecular, subchondral, and cortical bone tissue,” Trans. 35th Orthopaedic Research Society, Vol. 14, p. 102.
8.
Faulkner
K. G.
,
Cann
C. E.
, and
Hasegawa
B. H.
,
1991
, “
Effect of bone distribution on vertebral strength: Assessment with a patient-specific nonlinear finite element analysis
,”
Radiology
, Vol.
179
, pp.
669
674
.
9.
Gibson
L. J.
,
Ashby
M. F.
,
Schajer
G. S.
, and
Robertson
C. I.
,
1982
, “
The mechanics of two-dimensional cellular materials
,”
Proc. R. Soc. Lond.
,
A382
, pp.
25
42
.
10.
Gibson
L. J.
, and
Ashby
M. F.
,
1982
, “
The mechanics of three-dimensional cellular materials
,”
Proc. R. Soc. Lond.
,
A382
, pp.
43
59
.
11.
Gibson
L. J.
,
1985
, “
The mechanical behaviour of cancellous bone
,”
J. Biomechanics
, Vol.
18
(
5)
, pp.
317
328
.
12.
Goldstein
S. A.
, et al.,
1993
, “
Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone
,”
Calcif. Tissue Int.
, Vol.
53
(
S1)
, pp.
S127–S133
S127–S133
.
13.
Guo, X. E., Gibson, L. J., McMahon, T. A., Hayes, T. A., and Wilson, C., 1994, “Localized to global failure transition in osteoporotic trabecular bone,” Proc. 1994 ASME Summer Bioengineering Conference.
14.
Hollister
S. J.
,
Fyhrie
D. P.
,
Jepsen
K. J.
, and
Goldstein
S. A.
,
1991
, “
Application of homogenization theory to the study of trabecular bone mechanics
,”
J. Biomechanics
, Vol.
24
, No.
9
, pp.
825
839
.
15.
Jensen
K. S.
,
Mosekilde
L.
, and
Mosekilde
L.
,
1990
, “
A model of vertebral trabecular bone architecture and its mechanical properties
,”
Bone
,
11
, pp.
417
423
.
16.
Kasra
M.
, and
Grynpas
M. D.
,
1998
, “
Static and dynamic finite element analysis of an idealized structural model of vertebral trabecular bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
120
, pp.
267
272
.
17.
Keaveny
T. M.
, and
Hayes
W. C.
,
1993
, “
A 20-year perspective on the mechanical properties of trabecular bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
534
542
.
18.
Ku, J. L., Goldstein, S. A., Choi, K. W., London, M., Herzig, M. A., and Matthews, L. S., 1987, “The mechanical properties of single trabeculae,” Trans. 33rd Orthopaedic Research Society, Vol. 12, p. 48.
19.
Kuhn
J. L.
,
Goldstein
S. A.
,
Choi
K.
,
London
M.
,
Feldkamp
L. A.
, and
Matthews
L. S.
,
1989
, “
Comparison of the trabecular and cortical tissue moduli from human illac crests
,”
Journal of Orthopaedic Research
, Vol.
7
, pp.
876
884
.
20.
Lavaste
F.
,
Skalli
W.
,
Robin
S.
,
Roy-Camille
R.
, and
Mazel
C.
,
1992
, “
Three-dimensional geometrical and mechanical modeling of the lumbar spine
,”
Journal of Biomechanics
, Vol.
25
, No.
10
, pp.
1153
1164
.
21.
Linde
F.
, and
Sorenson
H. C.
,
1991
, “
Mechanical properties of trabecular bone: Dependency on strain rate
,”
J. Biomechanics
, Vol.
24
, No.
9
, pp.
803
809
.
22.
Linde
F.
,
Hvid
I.
, and
Madsen
F.
,
1991
, “
The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens
,”
J. Biomechanics
, Vol.
24
, No.
9
, pp.
803
809
.
23.
McBroom
R. J.
, et al.,
1985
, “
Prediction of vertebral body compressive fracture using quantitative computed tomography
,”
Journal of Bone and Joint Surgery
, Vol.
67
, pp.
1206
1214
.
24.
Mizrahi
J.
,
Silva
M. J.
,
Keaveny
T. M.
,
Edwards
W. T.
, and
Hayes
W. C.
,
1993
, “
Finite element stress analysis of the normal and osteoporotic lumbar vertebral body
,”
Spine
, Vol.
18
, No.
14
, pp.
2088
2096
.
25.
Mosekilde
Lis
, and
Mosekilde
Leif
,
1986
, “
Normal vertebral body size and compressive strength: Relations to age and to vertebral and iliac trabecular bone compressive strength
,”
Bone
, Vol.
7
, pp.
207
212
.
26.
Mosekilde
L.
,
Mosekilde
L.
, and
Danielson
C. C.
,
1987
, “
Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals
,”
Bone
, Vol.
8
, pp.
79
85
.
27.
Mosekilde
L.
,
1989
, “
Sex differences in age-related loss of vertebral trabecular bone mass and structure—Biomechanical consequences
,”
Bone
, Vol.
10
, pp.
425
432
.
28.
Mosekilde
L.
,
1993
, “
Vertebral structure and strength in vivo and in vitro
,”
Calcif. Tissue Int.
, Vol.
53
,
S1
, pp.
S121–S126
S121–S126
.
29.
Overaker, D. W., 1997, “Micromechanical modeling of open cell structures with application in finite element analysis of vertebral body mechanics,” Ph.D. thesis, Rutgers The State University of New Jersey, available from UMI (www.umi.com), Ann Arbor, MI.
30.
Overaker
D. W.
,
Cuitino
A. C.
, and
Langrana
N. A.
,
1998
, “
Elasto-plastic micromechanical modeling of two-dimensional irregular convex and non-convex (re-entrant) hexagonal foams
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
65
, No.
3
, pp.
748
757
.
31.
Panjabi, M. M., Goel, V., Oxland, T., Takata, K., Duranceau, J., Krag, M., and Price, M., 1992, “Human lumbar vertebrae: Quantitative three-dimensional anatomy,” Spine, Vol. 17, No. 3.
32.
Pugh
J. W.
,
Rose
R. M.
, and
Radin
E. L.
,
1973
, “
A structural model for the mechanical behavior of trabecular bone
,”
Journal of Biomechanics
, Vol.
6
, pp.
657
670
.
33.
Rice
R. C.
,
Cowin
S. C.
, and
Bowman
J. A.
,
1988
, “
On the dependence of the elasticity and strength of cancellous bone on apparent density
,”
J. Biomech.
, Vol.
21
, No.
2
, pp.
155
168
.
34.
Rockoff
S. D.
,
Sweet
E.
, and
Bleustein
J.
,
1969
, “
The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae
,”
Calcified Tissue Research
, Vol.
3
, pp.
163
175
.
35.
Shirazi-Adl
A.
,
1994
, “
Nonlinear stress analysis of the whole lumbar spine in torsion—Mechanics of facet articulation
,”
Journal of Biomechanics
, Vol.
27
, No.
3
, pp.
289
299
.
36.
Silva
M. J.
,
Wang
C.
,
Kcaveny
T. M.
, and
Hayes
W. C.
,
1994
, “
Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate
,”
Bone
, Vol.
15
, No.
4
, pp.
409
414
.
37.
Silva
M. J.
,
Keaveny
T. M.
, and
Hayes
W. C.
,
1997
, “
Load sharing between the shell and centrum in the lumbar vertebral body
,”
Spine
, Vol.
22
, No.
2
, pp.
140
150
.
38.
Silva
M. J.
, and
Gibson
L. J.
,
1997
, “
Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in the microstructure
,”
Bone
, Vol.
12
, No.
2
, pp.
191
199
.
39.
Snyder
B. D.
,
Piazza
S.
,
Edwards
W. T.
, and
Hayes
W. C.
,
1993
, “
Role of trabecular morphology in the etiology of age-related vertebral fractures
,”
Calcified Tissue International
, Vol.
53
(
S1)
, pp.
S14–S22
S14–S22
.
40.
van Rietbergen
B.
,
Weinans
H.
,
Huiskes
R.
, and
Odgaard
A.
,
1995
, “
A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
,”
Journal of Biomechanics
, Vol.
28
, No.
1
, pp.
69
81
.
41.
Vesterby
A.
,
Mosekilde
L.
,
Gundersen
H. J.
,
Melsen
F.
,
Mosekilde
L.
,
Holme
K.
, and
Sorensen
S.
,
1991
, “
Biologically meaningful determinants of the in vitro strength of lumbar vertebrae
,”
Bone
, Vol.
12
, pp.
219
224
.
42.
Vogel
M.
,
Hahn
M.
, and
Delling
G.
,
1993
, “
Relation between 2- and 3-dimensional architecture of trabecular bone in the human spine
,”
Bone
, Vol.
14
, pp.
199
203
.
43.
Warren
W. E.
, and
Kraynik
A. M.
,
1987
, “
Foam mechanics: The linear elastic response of two-dimensional spatially periodic cellular materials
,”
Mechanics of Materials
, Vol.
6
, pp.
27
37
.
44.
Warren
W. E.
, and
Kraynik
A. M.
,
1988
, “
The linear elastic properties of open-cell foams
,”
ASME Journal of Applied Mechanics
, Vol.
55
, pp.
341
346
.
45.
Warren
W. E.
,
Kraynik
A. M.
, and
Stone
C. M.
,
1989
, “
A constitutive model for two-dimensional nonlinear elastic foams
,”
J. Mech. Phys. Solids
, Vol.
37
, No.
6
, pp.
717
733
.
46.
Warren
W. E.
, and
Kraynik
A. M.
,
1991
, “
The nonlinear elastic behaviour of open-cell foams
,”
Journal of Applied Mechanics
, Vol.
58
, pp.
376
381
.
47.
White, A. A., and Panjabi, M. M., 1990, Clinical Biomechanics of the Spine, 2nd ed., J. B. Lippincott, Philadelphia.
48.
Whitehouse
W. J.
,
Dyson
E. D.
, and
Jackson
C. K.
,
1971
, “
The scanning electron microscope in studies of trabecular bone from a human vertebral body
,”
Journal of Anatomy
, Vol.
108
, pp.
481
496
.
49.
Williams
J. L.
, and
Lewis
J. L.
,
1982
, “
Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis
,”
JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
104
, pp.
50
56
.
50.
Yoganandan
N.
,
Myklebust
J. B.
,
Cusick
J. F.
,
Wilson
C. R.
, and
Sances
A.
,
1988
, “
Functional biomechanics of the thoracolumbar vertebral cortex
,”
Clinical Biomechanics
, Vol.
3
, pp.
11
18
.
This content is only available via PDF.
You do not currently have access to this content.