The elements of Quasi-Linear Viscoelastic (QLV) theory have been applied to model the internal shear mechanics of fresh and glutaraldehyde-fixed porcine aortic valve leaflets. A novel function estimation method was used to extract the material functions from experimental shear data obtained at one strain rate, and the model was used to predict the material response at different strain rates. In general, experiments and predictions were in good agreement, the larger discrepancies being in the prediction of peak stresses and hysteresis in cyclic shear. In shear, fixed tissues are stiffer (mean initial shear modulus, 13 kPa versus 427 Pa), take longer to relax to steady state (mean τ2 4,736 s versus 1,764 s) with a slower initial relaxation rate (mean magnitude of G˙(0), 1 s−1 versus 5 s−1), and relax to a lesser extent than fresh tissues (mean percentage stress remaining after relaxation, 60 versus 45 percent). All differences were significant at p = 0.04 or less, except for the initial relaxation slope. We conclude that shear experiments can complement traditional tensile and biaxial experiments toward providing a complete mechanical description of soft biomaterials, particularly when evaluating alternative chemical fixation techniques.

1.
Best
T. M.
,
McElhaney
J.
,
Garret
W. E.
, and
Myers
B. S.
,
1994
, “
Characterization of the passive responses of live skeletal muscle using the Quasi-Linear Theory of viscoelasticity
,”
J. Biomechanics
, Vol.
27
, No.
4
, pp.
413
419
.
2.
Dortmans
L. J. M. G.
,
Sauren
A. A. H. G.
, and
Rousseau
E. P. M.
,
1984
, “
Parameter estimation using the quasi-linear viscoelastic model proposed by Fung
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
198
203
.
3.
Fung, Y. C., 1972, “Stress-strain history relations of soft tissues in simple elongation,” in: Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and N. Anliker, eds., Prentice Hall, pp. 181–208.
4.
Fung, Y. C., 1993, Biomechanics: Mechanical properties of living tissues, 2nd ed., Springer-Verlag, New York.
5.
Kwan
M. K.
,
Lin
T. H.-C.
, and
Woo
S. L.-Y.
,
1993
, “
On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament
,”
J. Biomechanics
, Vol.
26
, Nos.
4/5
, pp.
447
452
.
6.
Lee
J. M.
,
Courtman
D. W.
, and
Boughner
D. R.
,
1984
, “
The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material
,”
J. Biomed. Mater. Res.
, Vol.
18
, pp.
61
77
.
7.
Lee, J. M., Haberer, S. A., Pereira, C. A., Naimark, W. A., Courtman, D. W., and Wilson, G. J., 1994, “High strain rate testing and structural analysis of pericardial bioprosthetic materials,” in: Biomaterials’ Mechanical properties, H. E. Kambic and A. T. Yokobori, eds., ASTM STP 11713, Philadelphia: ASTM, pp. 19–42.
8.
Leeson-Dietrich
J.
,
Boughner
D.
, and
Vesely
I.
,
1995
, “
Porcine pulmonary and aortic valves: a comparison of their tensile viscoelastic properties at physiological strain rates
,”
J. Heart Valve Dis.
, Vol.
4
, No.
1
, pp.
88
94
.
9.
Myers
B. S.
,
McElhaney
J. H.
, and
Doherty
B. J.
,
1991
, “
The viscoelastic responses of the human cervical spine in torsion: experimental limitations of Quasi-Linear Theory, and a method of reducing these effects
,”
J. Biomechanics
, Vol.
24
, No.
9
, pp.
811
817
.
10.
Neubert
H. K. P.
,
1963
, “
A simple model representing internal damping of solid materials
,”
Aeronautical Quart.
, Vol.
64
, pp.
187
210
.
11.
Nigul
I.
, and
Nigul
U.
,
1987
, “
On algorithms of evaluation of Fung’s relaxation function parameters
,”
J. Biomechanics
, Vol.
20
, No.
4
, pp.
343
352
.
12.
Rousseau
E. P. M.
,
Sauren
A. A. H. J.
,
van Hout
M. C.
, and
van Steenhoven
A. A.
,
1983
, “
Elastic and viscoelastic material behaviour of fresh and glutaraldehydetreated porcine aortic valve tissue
,”
J. Biomechanics
, Vol.
16
, No.
5
, pp.
339
348
.
13.
Sauren
A. A. H. J.
,
van Hout
M. C.
,
van Steenhoven
A. A.
,
Veldpaus
F. E.
, and
Janssen
J. D.
,
1983
, “
The mechanical properties of porcine aortic valve tissues
,”
J. Biomechanics
, Vol.
16
, No.
5
, pp.
327
337
.
14.
Sauren
A. A. H. J.
, and
Rousseau
E. P. M.
,
1983
, “
A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
105
, pp.
92
95
.
15.
Talman
E. A.
, and
Boughner
D. R.
,
1995
, “
Glutaraldehyde fixation alters the internal shearing properties of porcine aortic heart valve tissue
,”
Ann. Thorac. Surg.
, Vol.
60
, pp.
S369–S373
S369–S373
.
16.
Talman
E. A.
, and
Boughner
D. R.
,
1996
, “
Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function
,”
J. Heart Valve Dis.
, Vol.
5
, No.
2
, pp.
152
159
.
17.
Talman, E., and Boughner, D., 1997, “Shear rate affects viscoelastic measurements on porcine aortic valve tissue tested in shear,” in: 1997 Advances in Bioengineering, B. Simon, ed., ASME BED-Vol. 36, pp. 55–56.
18.
Vesely
I.
, and
Boughner
D.
,
1989
, “
Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements
,”
J. Biomechanics
, Vol.
22
, Nos.
6/7
, pp.
655
671
.
19.
Vesely
I.
,
1991
, “
Analysis of the Medtronic INTACT bioprosthetic valve: effects of ‘zero pressure’ fixation
,”
J. Thorac. Cardiovasc. Surg.
, Vol.
101
, No.
1
, pp.
90
99
.
20.
Vesely
I.
,
1996
, “
A mechanism for the decrease in stiffness of bioprosthetic heart valves tissues after cross-linking
,”
ASAIO Journal
, Vol.
42
, No.
6
, pp.
993
999
.
21.
Woo
S. L.-Y.
,
Simon
B. R.
,
Kuei
S. C.
, and
Akeson
W. H.
,
1980
, “
Quasi-linear viscoelastic properties of normal articular cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
85
90
.
22.
Woo
S. L.-Y.
,
Gomez
M. A.
, and
Akeson
W. H.
,
1981
, “
The time and history-dependent viscoelastic properties of the canine medial collateral ligament
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
, pp.
293
298
.
This content is only available via PDF.
You do not currently have access to this content.