Peristaltic transport of two-layered power-law fluids in axisymmetric tubes is studied. Use of the power-law fluid model permits independent choice of shear thinning, shear thickening, or Newtonian fluids for the core and the peripheral layer. The interface between the two layers is determined from a transcendental equation in the core radius. The variation of the time-mean flow Q¯ with the pressure rise or drop over one wavelength Δp is studied. It is observed that a negative time-mean flow is achieved under free pumping (Δp = 0) for the wave forms considered here if one of the peripheral layer and core fluids is non-Newtonian. The rheology of the peripheral layer fluid is a dominant factor in producing a negative or positive mean flow. It is noticed that a sinusoidal wave always yields a positive mean flow for powerlaw fluids. The trapped bolus volume for sinusoidal peristaltic wave is observed to decrease with an increase in the rate of shear thinning of the core and the peripheral layer fluids.

1.
Bo¨hme
G.
, and
Friedrich
R.
,
1983
, “
Peristaltic flow of viscoelastic liquids
,”
J. Fluid Mech.
, Vol.
128
, pp.
109
122
.
2.
Brasseur
J. G.
,
Consin
S.
, and
Lu
N. Q.
,
1987
, “
The influence of a peripheral layer of different viscosity on peristaltic pumping with Newtonian fluid
,”
J. Fluid Mech.
, Vol.
174
, pp.
495
519
.
3.
Cheremisinoff, N. P., 1988, Encyclopedia of Fluid Mechanics. Vol. 7: Rheology and non-Newtonian flows, Gulf Publishing Co., Houston, TX.
4.
Dintzis
F. R.
,
1995
, “
Shear thickening and transient flow effects in starch solutions
,”
J. Appl. Polymer Sci.
, Vol.
56
pp.
637
640
.
5.
Jaffrin
M. Y.
, and
Shapiro
A. H.
,
1971
, “
Peristaltic pumping
,”
Ann. Rev. Fluid Mech.
, Vol.
3
, pp.
13
36
.
6.
Kakac, S., Shah, R. K., and Aung, W., 1987, Handbook of single-phase convective heat transfer, Wiley, New York.
7.
Provost
A. M.
, and
Schwarz
W. H.
,
1994
, “
A theoretical study of viscous effects in peristaltic pumping
,”
J. Fluid Mech.
, Vol.
279
, pp.
177
195
.
8.
Ramachandra Rao
A.
, and
Usha
S.
,
1995
, “
Peristaltic transport of two immiscible fluids in a circular tube
,”
J. Fluid Mech.
, Vol.
298
, pp.
271
285
.
9.
Raju
K. K.
, and
Devanathan
R.
,
1972
, “
Peristaltic motion of a non-Newtonian fluid
,”
Rheol. Acta
, Vol.
11
, pp.
170
178
.
10.
Raju
K. K.
, and
Devanathan
R.
,
1974
, “
Peristaltic motion of a non-Newtonian fluid. Part II. Viscoelastic fluid
,”
Rheol. Acta
, Vol.
13
, pp.
944
948
.
11.
Rath, H. J., 1980, Perlstaltische Stro¨mungen, Springer, Berlin.
12.
Shukla
J. B.
, and
Gupta
S. P.
,
1982
, “
Peristaltic transport of a power law fluid with variable consistency
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
104
pp.
182
186
.
13.
Srivastava
L. P.
, and
Srivastava
V. P.
,
1984
, “
Peristaltic transport of Blood: Casson model: II
,”
J. Biomech.
, Vol.
17
, pp.
821
830
.
14.
Srivastava
L. M.
,
1986
, “
Peristaltic transport of a couple-stress fluid
,”
Rheologica Acta
, Vol.
25
, pp.
638
741
.
15.
Srivastava
L. M.
, and
Srivastava
V. P.
,
1988
, “
Peristaltic transport of a power-law fluid: application to the ductus efferentes of the reproductive tract
,”
Rheol. Acta
, Vol.
27
, pp.
428
433
.
16.
Zahm
J. M.
,
Pierrot
D.
,
Fuchey
C.
,
Levrier
J.
,
Duval
D.
,
Lloyd
K. G.
, and
Puchelle
E.
,
1989
, “
Comparative rheological profile of rat gastric and duodenal gel mucus
,”
Biorheology
, Vol.
26
, pp.
813
822
.
This content is only available via PDF.
You do not currently have access to this content.