The localization of atherosclerosis in the coronary arteries may be governed by local hemodynamic features. In this study, the pulsatile hemodynamics of the left coronary artery bifurcation was numerically simulated using the spectral element method for realistic in vivo anatomic and physiologic conditions. The velocity profiles were found to be skewed in both the left anterior descending and the circumflex coronary arteries. Velocity skewing arose from the bifurcation as well as from the curvature of the artery over the myocardial surface. Arterial wall shear stress was significantly lower in the bifurcation region, including the side walls. The greatest oscillatory behavior was localized to the outer wall of the circumflex artery. The time-averaged mean wall shear stress varied from about 3 to 98 dynes/cm2 in the left coronary artery system. The highly localized distribution of low and oscillatory shear stress along the walls strongly correlates with the focal locations of atheroma in the human left coronary artery.

1.
Altobelli
S. A.
, and
Nerem
R. M.
,
1985
, “
An Experimental Study of Coronary Artery Fluid Mechanics
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
, pp.
16
23
.
2.
Anayiotos, A., 1990, “Fluid Dynamics at a Compliant Bifurcation Model,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta.
3.
Asakura
T.
, and
Karino
T.
,
1990
, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circulation Res.
, Vol.
66
, pp.
1045
1066
.
4.
Back
L. H.
,
Back
M. R.
, and
Kwack
E. Y.
et al.,
1988
, “
Flow Measurements in a Human Femoral Artery Model With Reverse Lumen Curvature
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
, pp.
300
309
.
5.
Caro
C. G.
,
Fitz-Gerald
J. M.
, and
Schroter
R. C.
,
1969
, “
Arterial Wall Shear and Distribution of Early Atheroma in Man
,”
Nature
, Vol.
223
, pp.
1159
1161
.
6.
Chang
L. J.
, and
Tarbell
M.
,
1988
, “
A Numerical Study of Flow in Curved Tubes Simulating Coronary Arteries
,”
J. Biomech.
, Vol.
21
, pp.
927
937
.
7.
Deters
O. J.
,
Bargeron
C. B.
,
Mark
F. F.
et al.,
1986
, “
Measurement of Wall Motion and Wall Shear in a Compliant Arterial Cast
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
108
, pp.
355
358
.
8.
Duncan
D. D.
,
Bargeron
C. B.
,
Borchardt
S. E.
et al.,
1990
, “
The Effect of Compliance on Wall Shear in Cast of a Human Aortic Bifurcation
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
112
, pp.
183
188
.
9.
Ferguson, G. G., and Roach, M. R., 1972, “Flow Conditions at Bifurcations as Determined in Glass Models With References to the Focal Distribution of Vascular Lesions,” Cardiovascular Fluid Dynamics, Vol. 2, Bergel, D. H., ed., Academic Press, New York.
10.
Fox
B.
, and
Seed
W. A.
,
1981
, “
Location of Early Atheroma in the Human Coronary Arteries
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
103
, pp.
208
212
.
11.
Friedman
M. H.
,
Hutchins
G. M.
,
Bargeron
C. B.
et al.,
1981
, “
Correlation Between Intimal Thickness and Fluid Shear in Human Arteries
,”
Atherosclerosis
, Vol.
39
, pp.
425
436
.
12.
Friedman
M. H.
,
Bargeron
C. B.
,
Deters
O. J.
et al.,
1987
, “
Correlation Between Wall Shear and Intimal Thickness at a Coronary Branch
,”
Atherosclerosis
, Vol.
68
, pp.
27
33
.
13.
Fukushima
T.
, and
Azuma
T.
,
1982
, “
The Horseshoe Vortex: A Secondary Flow Generation in Arteries with Stenosis, Bifurcation, and Branchings
,”
Biorheology
, Vol.
19
, pp.
143
154
.
14.
Glagov
S.
,
Zarins
C.
,
Giddens
D. P.
, and
Ku
D. N.
,
1988
, “
Hemodynamics and Atherosclerosis: Insights and Perspectives Gained from Studies of Human Arteries
,”
Arch. Patholl Lab. Med.
, Vol.
112
, pp.
1018
1031
.
15.
Grottum
P.
,
Svindland
A.
, and
Walloe
L.
,
1983
, “
Localization of Atherosclerotic Lesions in the Bifurcation of the Main Left Coronary Artery
,”
Atherosclerosis
, Vol.
47
, pp.
55
62
.
16.
He, X., 1993, “Numerical Simulation of Blood Flow in Human Coronary Arteries,” Ph.D. thesis, Georgia Institute of Technology, Atlanta.
17.
Helmlinger
G.
,
Geiger
R. V.
,
Schreck
S.
, and
Nerem
R. M.
,
1991
, “
Effects of pulsatile flow on cultured vascular endothelial cells morphology
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
123
131
.
18.
Kajiya
F.
,
Tomonaga
G.
,
Tsujioka
K.
et al.,
1985
, “
Evaluation of Local Blood Flow Velocity in Proximal and Distal Coronary Arteries by Laser Doppler Method
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
, pp.
10
15
.
19.
Ku
D. N.
,
Giddens
D. P.
,
Zarins
C. K.
et al.,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation
,”
Arteriosclerosis
, Vol.
5
, pp.
293
302
.
20.
Liepsch
D.
, and
Moravec
S.
,
1984
, “
Pulsatile Flow of Non-Newtonian Fluid in Distensible Models of Human Arteries
,”
Biorheology
, Vol.
21
, pp.
571
586
.
21.
Mark
F. F.
,
Bargeron
C. B.
,
Deters
O. J.
et al.,
1985
, “
Nonquasi-Steady Character of Pulsatile Flow in Human Coronary Arteries
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
, pp.
24
28
.
22.
MacAlpin
R. N.
,
Abbasi
A. S.
,
Grollman
J. H.
et al.,
1973
, “
Human Coronary Artery Size During Life
,”
Radiology
, Vol.
108
, pp.
567
576
.
23.
Moore
J. E.
,
Xu
C.
,
Glagov
S.
et al.,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aortic Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
, Vol.
110
, pp.
225
240
.
24.
NEKTON User’s Guide, 1991, Fluent, Inc., Centerra Research Park, Lebanon, NH.
25.
Nerem
R. M.
,
Rumberger
J. A.
,
Gross
D. R.
et al.,
1976
, “
Hot Film Coronary Artery Velocity Measurements in Horses
,”
Cardiovasc. Res.
, Vol.
10
, pp.
301
313
.
26.
Nerem
R. M.
, and
Cornhill
J. F.
,
1980
, “
The Role of Fluid Mechanics in Atherogenesis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
181
189
.
27.
Nerem, R. M., and Seed, W. A., 1983, “Coronary Artery Geometry and Its Fluid Mechanical Implications,” Fluid Dynamics as a Localizing Factor for Atherosclerosis, Schettler, G. et al., ed., Springer-Verlag, Berlin.
28.
Patera
A. T.
,
1984
, “
A Spectrum Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Physics
, Vol.
54
, pp.
468
488
.
29.
Perktold
K.
,
Resch
M.
, and
Peter
R.
,
1991
, “
Three-Dimensional Numerical Analysis of Pulsatile Flow and Wall Shear Stress in the Carotid Artery Bifurcation
,”
J. Biomech.
, Vol.
24
, pp.
409
420
.
30.
Rindt
C. C. M.
,
Van Steenhoven
A. A.
,
Janssen
J. D.
et al.,
1990
, “
A Numerical Analysis of Steady Flow in a Three-Dimensional Model of the Carotid Artery Bifurcation
,”
J. Biomech.
, Vol.
23
, pp.
461
473
.
31.
Sabbah
H. N.
,
Walburn
F. J.
, and
Stein
P. D.
,
1984
, “
Patterns of Flow in the Left Coronary Artery
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
272
279
.
32.
Steinman, D. A., and Ethier, C. R., 1993, “Numerical Modeling of Flow in a Distensible End-to-Side Anastomosis,” BED-Vol. 24, pp. 379–382, 1993 Bioengineering Conference, ASME.
33.
Svindland
A.
,
1983
, “
The Localization of Sudanophilic and Fibrous Plaques in the Main Left Coronary Bifurcation
,”
Atherosclerosis
, Vol.
48
, pp.
139
145
.
34.
Tang, T. D., 1990, “Periodic Flow in a Bifurcation Tube at Moderate Reynolds Number,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta.
35.
Tang, T. D., Giddens, D. P., Zarins, C. K., and Glagov, S., 1990, “Velocity Profile and Wall Shear Measurements in a Model Human Coronary Artery,” Advances in Bioengineering, ASME WAM, Atlanta, pp. 261–263.
36.
Walbum
F. J.
, and
Stein
P. D.
,
1981
, “
Velocity Profiles in Symmetrically Branched Tubes Simulating the Aortic Bifurcation
,”
J. Biomech.
, Vol.
14
, pp.
601
611
.
37.
Wells
M. K.
,
Winter
D. C.
,
Nelson
A. W.
et al.,
1977
, “
Blood Velocity Patterns in Coronary Arteries
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
99
, pp.
26
31
.
38.
Yao
L. S.
, and
Berger
S. A.
,
1975
, “
Entry Flow in a Curved Pipe
,”
J. Fluid Mech.
, Vol.
67
, pp.
177
196
.
This content is only available via PDF.
You do not currently have access to this content.