Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Gravel roads lack standardized features such as curbs or painted lines, presenting detection challenges to autonomous vehicles. Global positioning service (GPS) and high resolution maps may not be reliable for navigation of gravel roads, as some roads may only be width of the vehicle and GPS may not be accurate enough. Normal distribution transform (NDT) LiDAR scan matching may be insufficient for navigating on gravel roads as there may not be enough geometrically distinct features for reliable scan matching. This paper examined a method of classifying scanning LiDAR spatial and remission data features for explicit detection of unmarked gravel road surfaces. Exploration of terrain classification using high resolution scanning LiDAR data of specific road surfaces may allow for predicting gravel road boundary locations potentially enabling confident autonomous operations on gravel roads. The principal outcome of this work was a method for gravel road terrain detection using LiDAR data for the purpose of predicting potential road boundary locations. Random decision forests were trained using scanning LiDAR data terrain classification to detect unmarked gravel and asphalt surfaces. It was found that a true-positive accuracy for gravel and asphalt surfaces was 75% and 87%, respectively, at an estimated rate of 13 ms per 360 deg scan. Overlapping results between manually projected and actual road surface areas resulted in 93% intersecting gravel road detection accuracy. Automated post-process examination of classification results yielded an true-positive gravel road detection rate of 72%.

References

1.
Mbiyana
,
K.
,
Kans
,
M.
,
Campos
,
J.
, and
Håkansson
,
L.
,
2023
, “
Literature Review on Gravel Road Maintenance: Current State and Directions for Future Research
,”
Transp. Res. Rec.
,
2677
(
5
), pp.
506
522
.
2.
Medhi
,
A.
,
2015
, “
Rural Roads in India: An Overview of Connectivity Status
,”
South-Asian J. Multidiscipl. Stud.
,
4
(
6
), pp.
17
26
.
3.
Ort
,
T.
,
Paull
,
L.
, and
Rus
,
D.
,
2018
, “
Autonomous Vehicle Navigation in Rural Environments Without Detailed Prior Maps
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, IEEE, pp.
2040
2047
.
4.
Walters
,
J. G.
,
Meng
,
X.
,
Xu
,
C.
,
Jing
,
H. J.
, and
Marsh
,
S.
,
2019
, “
Rural Positioning Challenges for Connected and Autonomous Vehicles
,”
Proceedings of the 2019 International Technical Meeting of The Institute of Navigation
,
Reston, VA
,
Jan. 28–31
, pp.
828
842
.
5.
Crisman
,
J.
, and
Thorpe
,
C.
,
1993
, “
SCARF: A Color Vision System That Tracks Roads and Intersections
,”
IEEE Trans. Rob. Autom.
,
9
(
1
), pp.
49
58
.
6.
Yadav
,
M.
,
Singh
,
A. K.
, and
Lohani
,
B.
,
2017
, “
Extraction of Road Surface From Mobile LiDAR Data of Complex Road Environment
,”
Int. J. Remote Sens.
,
38
(
16
), pp.
4655
4682
.
7.
Liu
,
Z.
,
Wang
,
J.
, and
Liu
,
D.
,
2013
, “
A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data
,”
Sensors
,
13
(
1
), pp.
1102
1120
.
8.
Qiu
,
K.
,
Sun
,
K.
,
Ding
,
K.
, and
Shu
,
Z.
,
2016
, “
A Fast and Robust Algorithm for Road Edges Extraction From LiDAR Data
,”
ISPRS—Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci.
,
XLI-B5
, pp.
693
698
.
9.
Fernandes
,
R.
,
Premebida
,
C.
,
Peixoto
,
P.
,
Wolf
,
D.
, and
Nunes
,
U.
,
2014
, “
Road Detection Using High Resolution LIDAR
,”
2014 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
Coimbra, Portugal
,
Oct. 27–30
, IEEE, pp.
1
6
.
10.
Seker
,
S. S.
,
Kunter
,
F. C.
,
Çerezci
,
O.
, and
Karabag
,
K.
,
2017
, “
Experiments of the Propagation Through Forest at GSM Frequencies (2G-3G-4G)
,”
Int. J. Modern Res. Eng. Technol.
,
2
(
8
), p.
6
.
11.
Yang
,
B.
,
Fang
,
L.
, and
Li
,
J.
,
2013
, “
Semi-automated Extraction and Delineation of 3D Roads of Street Scene From Mobile Laser Scanning Point Clouds
,”
ISPRS—J. Photogram. Remote Sens.
,
79
, pp.
80
93
.
12.
Miyazaki
,
R.
,
Yamamoto
,
M.
,
Hanamoto
,
E.
,
Izumi
,
H.
, and
Harada
,
K.
,
2014
, “
A Line-Based Approach for Precise Extraction of Road and Curb Region From Mobile Mapping Data
,”
ISPRS—Ann. Photogram. Remote Sens. Spatial Inf. Sci.
,
II-5
, pp.
243
250
.
13.
Hervieu
,
A.
, and
Soheilian
,
B.
,
2013
, “
Road Side Detection and Reconstruction Using LIDAR Sensor
,”
IEEE Intelligent Vehicles Symposium
,
Gold Coast, QLD, Australia
,
June 23–26
.
14.
Smadja
,
L.
,
Ninot
,
J.
, and
Gavrilovic
,
T.
,
2010
, “
Road Extraction and Environment Interpretation From LiDAR Sensors
,”
IAPRS
,
38
(
1
), pp.
281
286
.
15.
Skorseth
,
K.
,
2000
,
Gravel Roads: Maintenance and Design Manual
,
US Department of Transportation, Federal Highway Administration.
16.
Peter
,
B.
,
2003
, “
The Normal Distributions Transform: A New Approach to Laser Scan Matching
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 27–31
.
17.
Borkar
,
A.
,
Hayes
,
M.
, and
Smith
,
M. T.
,
2009
, “
Robust Lane Detection and Tracking With RANSAC and Kalman Filter
,”
2009 16th IEEE International Conference on Image Processing (ICIP)
,
Cairo, Egypt
, pp.
3261
3264
.
18.
Guo
,
J.
,
Wei
,
Z.
, and
Miao
,
D.
,
2015
, “
Lane Detection Method Based on Improved RANSAC Algorithm
,”
2015 IEEE Twelfth International Symposium on Autonomous Decentralized Systems
,
Taichung, Taiwan
,
Mar. 25–27
, pp.
285
288
.
19.
Wan
,
Y.
,
Shen
,
S.
,
Song
,
Y.
, and
Liu
,
S.
,
2007
, “
A Road Extraction Approach Based on Fuzzy Logic for High-Resolution Multispectral Data
,”
Fourth International Conference on Fuzzy Systems and Knowledge Discovery
,
Haikou, China
,
Aug. 24–27
, Vol. 2, IEEE, pp.
203
207
.
20.
Laible
,
S.
,
Khan
,
Y. N.
,
Bohlmann
,
K.
, and
Zell
,
A.
,
2012
, “
3d LiDAR- and Camera-Based Terrain Classification Under Different Lighting Conditions
,”
Autonomous Mobile Systems 2012, 22, Fachgespräch Stuttgart, 26
, bis 28, September, Springer, pp.
21
29
.
21.
Pollyea
,
R. M.
, and
Fairley
,
J. P.
,
2012
, “
Experimental Evaluation of Terrestrial LiDAR-Based Surface Roughness Estimates
,”
Geosphere
,
8
(
1
), pp.
222
228
.
22.
Rychkov
,
I.
,
Brasington
,
J.
, and
Vericat
,
D.
,
2012
, “
Computational and Methodological Aspects of Terrestrial Surface Analysis Based on Point Clouds
,”
Comput. Geosci.
,
42
, pp.
64
70
.
23.
Lague
,
D.
,
Brodu
,
N.
, and
Leroux
,
J.
,
2013
, “
Accurate 3D Comparison of Complex Topography With Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z)
,”
ISPRS J. Photogram. Remote Sens.
,
82
, pp.
10
26
.
24.
Brubaker
,
K. M.
,
Myers
,
W. L.
,
Drohan
,
P. J.
,
Miller
,
D. A.
, and
Boyer
,
E. W.
,
2013
, “
The Use of LiDAR Terrain Data in Characterizing Surface Roughness and Microtopography
,”
Appl. Environ. Soil Sci.
,
2013
, p.
e891534
.
25.
Turner
,
R.
,
Panciera
,
R.
,
Tanase
,
M. A.
,
Lowell
,
K.
,
Hacker
,
J. M.
, and
Walker
,
J. P.
,
2014
, “
Estimation of Soil Surface Roughness of Agricultural Soils Using Airborne LiDAR
,”
Remote Sens. Environ.
,
140
, pp.
107
117
.
26.
Campbell
,
M. J.
,
Dennison
,
P. E.
, and
Butler
,
B. W.
,
2017
, “
A LiDAR-Based Analysis of the Effects of Slope, Vegetation Density, and Ground Surface Roughness on Travel Rates for Wildland Firefighter Escape Route Mapping
,”
Int. J. Wildland Fire
,
26
(
10
), p.
884
.
27.
Shepard
,
M. K.
,
Campbell
,
B. A.
,
Bulmer
,
M. H.
,
Farr
,
T. G.
,
Gaddis
,
L. R.
, and
Plaut
,
J. J.
,
2001
, “
The Roughness of Natural Terrain: A Planetary and Remote Sensing Perspective
,”
J. Geophys. Res.: Planets
,
106
(
E12
), pp.
32777
32795
.
28.
Tegowski
,
J.
,
Trzcinska
,
K.
,
Kasprzak
,
M.
, and
Nowak
,
J.
,
2016
, “
Statistical and Spectral Features of Corrugated Seafloor Shaped by the Hans Glacier in Svalbard
,”
Remote Sens.
,
8
(
9
), p.
744
.
29.
Sock
,
J.
,
Kim
,
J.
,
Min
,
J.
, and
Kwak
,
K.
,
2016
, “
Probabilistic Traversability Map Generation Using 3d-LiDAR and Camera
,”
2016 IEEE international conference on robotics and automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
5631
5637
.
30.
Milenković
,
M.
,
Ressl
,
C.
,
Karel
,
W.
,
Mandlburger
,
G.
, and
Pfeifer
,
N.
,
2018
, “
Roughness Spectra Derived From Multi-Scale LiDAR Point Clouds of a Gravel Surface: A Comparison and Sensitivity Analysis
,”
ISPRS Int. J. Geo-Inf.
,
7
(
2
), p.
69
. doi.org/10.3390/ijgi7020069
31.
Yadav
,
M.
, and
Singh
,
A. K.
,
2018
, “
Rural Road Surface Extraction Using Mobile LiDAR Point Cloud Data
,”
J. Ind. Soc. Remote Sens.
,
46
(
4
), pp.
531
538
.
32.
Ibrahim
,
S.
, and
Lichti
,
D.
,
2012
, “
Curb-Based Street Floor Extraction From Mobile Terrestrial LiDAR Point Cloud
,”
Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci.—ISPRS Arch.
,
39
, pp.
193
198
.
33.
Manz
,
M.
,
Himmelsbach
,
M.
,
Luettel
,
T.
, and
Wuensche
,
H.-J.
,
2011
, “
Detection and Tracking of Road Networks in Rural Terrain by Fusing Vision and LIDAR
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
4562
4568
.
34.
Yadav
,
M.
,
Lohani
,
B.
, and
Singh
,
A.
,
2018
, “
Road Surface Detection From Mobile LiDAR Data
,”
ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci.
,
IV-5
, pp.
95
101
.
35.
Yadav
,
M.
,
Husain
,
A.
,
Singh
,
A.
, and
Lohani
,
B.
,
2015
, “
Pole-Shaped Object Detection Using Mobile LiDAR Data in Rural Road Environments
,”
ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci.
,
II-3/W5
, pp.
11
16
.
36.
Laible
,
S.
,
Khan
,
Y. N.
,
Bohlmann
,
K.
, and
Zell
,
A.
,
2012
, “
3D LIDAR- and Camera-Based Terrain Classification Under Different Lighting Conditions
,”
Autonomous Mobile Systems 2012
, pp.
21
29
.
37.
Laible
,
S.
,
Khan
,
Y. N.
, and
Zell
,
A.
,
2013
, “
Terrain Classification With Conditional Random Fields on Fused 3D LIDAR and Camera Data
,”
2013 European Conference on Mobile Robots
,
Barcelona, Spain
,
Sept. 25–27
, pp.
172
177
.
38.
Laible
,
S.
, and
Zell
,
A.
,
2014
, “
Building Local Terrain Maps Using Spatio-temporal Classification for Semantic Robot Localization
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, IEEE, pp.
4591
4597
.
39.
Rasmusssen
,
C.
,
2002
, “
Combining Laser Range, Color, and Texture Cues for Autonomous Road Following
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation
,
May 11–15
,
Washington, DC
, Vol. 4, IEEE, pp.
4320
4325
.
40.
Reymann
,
C.
, and
Lacroix
,
S.
,
2015
, “
Improving LiDAR Point Cloud Classification Using Intensities and Multiple Echoes
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
5122
5128
.
41.
Walas
,
K.
, and
Nowicki
,
M.
,
2014
, “
Terrain Classification Using Laser Range Finder
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
5003
5009
.
42.
Wietrzykowski
,
J.
, and
Belter
,
D.
,
2014
, “
Boosting Support Vector Machines For RGB-D Based Terrain Classification
,”
J. Autom. Mobile Rob. Intell. Syst.
,
8
(
3
), pp.
28
34
.
43.
Wang
,
S.
,
Kodagoda
,
S.
, and
Ranasinghe
,
R.
,
2012
, “
Road Terrain Type Classification Based on Laser Measurement System Data
,”
Australasian Conference on Robotics and Automation
,
Wellington, New Zealand
,
Dec. 3–5
.
44.
Mijakovska
,
S.
,
Nedelkovski
,
I.
, and
Popovski
,
F.
,
2014
, “
Generating 3D Model From Video
,”
Adv. Comput.: Int. J.
,
5
, pp.
13
19
.
45.
Chellappa
,
R.
, and
Chatterjee
,
S.
,
1985
, “
Classification of Textures Using Gaussian Markov Random Fields
,”
IEEE Trans. Acoust. Speech Signal Process.
,
33
(
4
), pp.
959
963
.
46.
Wallach
,
H. M.
,
2004
, “
Conditional Random Fields: An Introduction
,” Tech. Rep. (CIS).
47.
Häselich
,
M.
,
Arends
,
M.
,
Lang
,
D.
, and
Paulus
,
D.
,
2011
, “
Terrain Classification With Markov Random Fields on Fused Camera and 3d Laser Range Data
,”
Computer Science, Engineering, Environmental Science
, pp.
153
158
.
48.
Zhao
,
G.
,
Xiao
,
X.
,
Yuan
,
J.
, and
Ng
,
G.-W.
,
2014
, “
Fusion of 3D-LiDAR and Camera Data for Scene Parsing
,”
J. Visual Commun. Image Represent.
,
25
, pp.
165
183
.
49.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
50.
Rauscher
,
G.
,
Dube
,
D.
, and
Zell
,
A.
,
2016
, “
A Comparison of 3D Sensors for Wheeled Mobile Robots
,”
J. Rob. Auton. Syst.
,
302
, pp.
29
41
.
51.
DuPont
,
E. M.
,
Roberts
,
R. G.
,
Selekwa
,
M. F.
,
Moore
,
C. A.
, and
Collins
,
E. G.
,
2005
, “
Online Terrain Classification for Mobile Robots
,”
ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
,
Nov. 5–11
, pp.
1643
1648
.
52.
Filitchkin
,
P.
, and
Byl
,
K.
,
2012
, “
Feature-Based Terrain Classification for LittleDog
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
1387
1392
.
53.
Weszka
,
J. S.
,
Dyer
,
C. R.
, and
Rosenfeld
,
A.
,
1976
, “
A Comparative Study of Texture Measures for Terrain Classification
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-6
(
4
), pp.
269
285
.
54.
Manduchi
,
R.
,
Castano
,
A.
,
Talukder
,
A.
, and
Matthies
,
L.
,
2005
, “
Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation
,”
Auton. Rob.
,
18
(
1
), pp.
81
102
.
55.
Walch
,
W.
,
Eder
,
M.J.
,
Steinbauer-Wagner
,
G.
, and
Mautner-Lassnig
,
K.
,
2022
, “
Offroad Terrain Classification for Mobile Robots: Austrian Robotics Workshop 2022
,”
Proceedings of the Austrian Robotics Workshop
,
Austria, Villach
,
June 14 –15
, pp.
6
11
.
56.
Wang
,
S.
,
Kodagoda
,
S.
,
Shi
,
L.
, and
Dai
,
X.
,
2018
, “
Two-Stage Road Terrain Identification Approach for Land Vehicles Using Feature-Based and Markov Random Field Algorithm
,”
IEEE Intell. Syst.
,
33
(
1
), pp.
29
39
.
57.
Lei
,
G.
,
Yao
,
R.
,
Zhao
,
Y.
, and
Zheng
,
Y.
,
2021
, “
Detection and Modeling of Unstructured Roads in Forest Areas Based on Visual-2D Lidar Data Fusion
,”
Forests
,
12
(
7
), p.
820
.
58.
Fernández-Delgado
,
M.
,
Cernadas
,
E.
,
Barro
,
S.
, and
Amorim
,
D.
,
2014
, “
Do We Need Hundreds of Classifiers to Solve Real World Classification Problems?
J. Mach. Learn. Res.
,
15
(
1
), pp.
3133
3181
.
59.
Nawar
,
S.
, and
Mouazen
,
A.
,
2017
, “
Comparison Between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon
,”
Sensors
,
17
, p.
2428
.
60.
Bernatz
,
S.
,
Ackermann
,
J.
,
Mandel
,
P.
,
Kaltenbach
,
B.
,
Zhdanovich
,
Y.
,
Harter
,
P. N.
,
Döring
,
C.
, et al.,
2020
, “
Comparison of Machine Learning Algorithms to Predict Clinically Significant Prostate Cancer of the Peripheral Zone With Multiparametric MRI Using Clinical Assessment Categories and Radiomic Features
,”
Eur. Radiol.
,
30
, pp.
6757
6769
.
61.
Ahmad
,
M. W.
,
Mourshed
,
M.
, and
Rezgui
,
Y.
,
2017
, “
Trees Vs Neurons: Comparison Between Random Forest and ANN for High-Resolution Prediction of Building Energy Consumption
,”
Energy Build.
,
147
, pp.
77
89
.
62.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Proceedings of 3rd International Conference on Document Analysis and Recognition
,
Montreal, QC, Canada
,
Aug. 6
, pp.
278
282
.
63.
Khan
,
Y. N.
,
Komma
,
P.
, and
Zell
,
A.
,
2011
, “
High Resolution Visual Terrain Classification for Outdoor Robots
,”
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)
,
Barcelona, Spain
,
Nov. 6–13
, IEEE, pp.
1014
1021
.
64.
Schilling
,
F.
,
Chen
,
X.
,
Folkesson
,
J.
, and
Jensfelt
,
P.
,
2017
, “
Geometric and Visual Terrain Classification for Autonomous Mobile Navigation
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
2678
2684
.
65.
Wietrzykowski
,
J.
, and
Skrzypczyński
,
P.
,
2019
, “Context-Aware Recognition of Drivable Terrain With Automated Parameters Estimation,”
Intelligent Autonomous Systems
,
Springer
, pp.
626
638
.
66.
Snoek
,
J.
,
Larochelle
,
H.
, and
Adams
,
R. P.
,
2012
, “
Practical Bayesian Optimization of Machine Learning Algorithms
,”
Advances in Neural Information Processing Systems
,
Lake Tahoe, NV
,
Dec. 3–6
.
67.
Grejner-Brzezinska
,
D. A.
,
Arslan
,
N.
,
Wielgosz
,
P.
, and
Hong
,
C. -K.
,
2009
, “
Network Calibration for Unfavorable Reference-Rover Geometry in Network-Based RTK: Ohio CORS Case Study
,”
J. Surv. Eng.
,
135
(
3
), pp.
90
100
.
68.
Wielgosz
,
P.
,
Grejner-Brzezinska
,
D.
, and
Kashani
,
I.
,
2005
, “
High-Accuracy DGPS and Precise Point Positioning Based on Ohio CORS Network
,”
Navigation
,
52
(
1
), pp.
23
28
.
You do not currently have access to this content.