Abstract

Autonomous robotics plays a pivotal role to simplify human–machine interaction while meeting the current industrial demands. In that process, machine intelligence plays a dominant role during the decision making in the operational state-space. Primarily, this decision making and control mechanism relies on sensing and actuation. Simultaneous localization and mapping (SLAM) is the most advanced technique that facilitates both sensing and actuation to achieve autonomy for robots. This work aims to collate multidimensional aspects of simultaneous localization and mapping techniques primarily in the purview of both deterministic and probabilistic frameworks. This investigation on SLAM classification is further elaborated into different categories such as feature-based SLAM and optimization-based SLAM. In this work, the chronological evolution of the SLAM technique develops a comprehensive understanding among the concerned research community.

References

1.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
,
1984
, “
Bettering Operation of Robots by Learning
,”
J. Rob. Syst.
,
1
(
2
), pp.
123
140
.
2.
Durrant-Whyte
,
H.
, and
Henderson
,
T. C.
,
2016
,
Springer Handbook of Robotics
, Version 1.2,
Springer
,
The University of Sydney, NSW, Australia
, pp.
867
896
.
3.
Murphy
,
R. R.
,
2019
,
Introduction to AI Robotics
, 2nd ed.,
MIT Press
,
Cambridge, MA
.
4.
Liu
,
Q.
,
Li
,
R.
,
Hu
,
H.
, and
Gu
,
D.
,
2016
, “
Extracting Semantic Information From Visual Data: A Survey
,”
Robotics
,
5
(
1
), p.
8
.
5.
Yang
,
G. Z.
,
Dario
,
P.
, and
Kragic
,
D.
,
2018
, “
Social Robotics—Trust, Learning, and Social Interaction
,”
Science Rob.
,
3
(
21
), p. eaau8839.
6.
Durrant-Whyte
,
H.
, and
Bailey
,
T.
,
2006
, “
Simultaneous Localization and Mapping: Part I
,”
IEEE Rob. Autom. Mag.
,
13
(
2
), pp.
99
110
.
7.
Morad
,
S. D.
,
2019
, “
The Spinning Projectile Extreme Environment Robot
,” Ph.D. thesis,
The University of Arizona
,
Tucson, AZ
.
8.
Siva
,
S.
, and
Zhang
,
H.
,
2018
, “
Omnidirectional Multisensory Perception Fusion for Long-Term Place Recognition
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
,
IEEE
, pp.
1
9
.
9.
Lu
,
Y.
,
Xue
,
Z.
,
Xia
,
G. S.
, and
Zhang
,
L.
,
2018
, “
A Survey on Vision-Based UAV Navigation
,”
Geo-Spatial Inform. Sci.
,
21
(
1
), pp.
21
32
.
10.
Chatila
,
R.
, and
Laumond
,
J. P.
,
1985
, “
Position Referencing and Consistent World Modeling for Mobile Robots
,”
Proceedings 1985 IEEE International Conference on Robotics and Automation
,
St. Louis, MO
,
Mar. 25–28
, Vol. 2, IEEE, pp.
138
145
.
11.
Smith
,
R.
,
Self
,
M.
, and
Cheeseman
,
P.
,
1990
, “
Estimating Uncertain Spatial Relationships in Robotics
,”
Autonomous Robot Vehicles
,
New York
, Springer, pp.
167
193
.
12.
Clabaugh
,
C.
, and
Matarić
,
M. J.
,
2018
, “
Robots for the People, by the People: Personalizing Human–Machine Interaction
,”
Sci. Rob.
,
3
(
21
), p.
eaat7451
.
13.
Leonard
,
J. J.
, and
Durrant-Whyte
,
H. F.
,
1991
, “
Simultaneous Map Building and Localization for an Autonomous Mobile Robot
,”
IROS
,
Osaka, Japan
,
Nov. 3–5
, Vol. 3, pp.
1442
1447
.
14.
Dissanayake
,
G.
,
Huang
,
S.
,
Wang
,
Z.
, and
Ranasinghe
,
R.
,
2011
, “
A Review of Recent Developments in Simultaneous Localization and Mapping
,”
2011 SIXth International Conference on Industrial and Information Systems
,
Kandy, Srilanka
,
Aug. 16–19
, IEEE, pp.
477
482
.
15.
Bresson
,
G.
,
Alsayed
,
Z.
,
Yu
,
L.
, and
Glaser
,
S.
,
2017
, “
Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving
,”
IEEE Trans. Intell. Veh.
,
2
(
3
), pp.
194
220
.
16.
Taketomi
,
T.
,
Uchiyama
,
H.
, and
Ikeda
,
S.
,
2017
, “
Visual Slam Algorithms: A Survey From 2010 to 2016
,”
IPSJ Trans. Comput. Vis. Appl.
,
9
(
1
), p.
16
.
17.
Fuentes-Pacheco
,
J.
,
Ruiz-Ascencio
,
J.
, and
Rendón-Mancha
,
J. M.
,
2015
, “
Visual Simultaneous Localization and Mapping: A Survey
,”
Artif. Intell. Rev.
,
43
(
1
), pp.
55
81
.
18.
Dharmasiri
,
T.
,
Lui
,
V.
, and
Drummond
,
T.
,
2016
, “
MO-SLAM: Multiobject SLAM With Run-Time Object Discovery Through Duplicates
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
1214
1221
.
19.
Manderson
,
T.
,
Shkurti
,
F.
, and
Dudek
,
G.
,
2016
, “
Texture-Aware SLAM Using Stereo Imagery and Inertial Information
,”
13th Conference on Computer and Robot Vision (CRV)
,
Victoria, BC, Canada
,
June 1–3
, IEEE, pp.
456
463
.
20.
Kochanov
,
D.
,
Ošep
,
A.
,
Stückler
,
J.
, and
Leibe
,
B.
,
2016
, “
Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
1785
1792
.
21.
Endres
,
F.
,
Hess
,
J.
,
Engelhard
,
N.
,
Sturm
,
J.
,
Cremers
,
D.
, and
Burgard
,
W.
,
2012
, “
An Evaluation of the RGB-D SLAM System
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, IEEE, pp.
1691
1696
.
22.
Belter
,
D.
,
Nowicki
,
M.
, and
Skrzypczyński
,
P.
,
2016
, “
Improving Accuracy of Feature-Based RGB-D SLAM by Modeling Spatial Uncertainty of Point Features
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
1279
1284
.
23.
Ataer-Cansizoglu
,
E.
,
Taguchi
,
Y.
, and
Ramalingam
,
S.
,
2016
, “
Pinpoint SLAM: A Hybrid of 2D and 3D Simultaneous Localization and Mapping for RGB-D Sensors
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
1300
1307
.
24.
Kendall
,
A.
, and
Cipolla
,
R.
,
2016
, “
Modelling Uncertainty in Deep Learning for Camera Relocalization
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
4762
4769
.
25.
Neubert
,
P.
,
Schubert
,
S.
, and
Protzel
,
P.
,
2017
, “
Sampling-Based Methods for Visual Navigation in 3D Maps by Synthesizing Depth Images
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE,pp. 2492–2498.
26.
Cieslewski
,
T.
, and
Scaramuzza
,
D.
,
2017
, “
Efficient Decentralized Visual Place Recognition From Full-Image Descriptors
,”
2017 International Symposium on Multirobot and Multiagent Systems (MRS)
,
Los Angeles, CA
,
Dec. 4–5
, IEEE, pp.
78
82
.
27.
Cabrera-Ponce
,
A. A.
, and
Martinez-Carranza
,
J.
,
2017
, “
A Vision-Based Approach for Autonomous Landing
,”
2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)
,
Sweden
,
Oct. 3–5
, IEEE, pp.
126
131
.
28.
Klein
,
G.
, and
Murray
,
D.
,
2008
, “
Improving the Agility of Keyframe-Based SLAM
,”
European Conference on Computer Vision
,
Marseille, France
,
Oct. 12–18
, Springer, pp.
802
815
.
29.
Ferrera
,
M.
,
Moras
,
J.
,
Trouvé-Peloux
,
P.
, and
Creuze
,
V.
,
2019
, “
Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments
,”
Sensors
,
19
(
3
), p.
687
.
30.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.
31.
Aqel
,
M. O.
,
Marhaban
,
M. H.
,
Saripan
,
M. I.
, and
Ismail
,
N. B.
,
2016
, “
Review of Visual Odometry: Types, Approaches, Challenges, and Applications
,”
SpringerPlus
,
5
(
1
), p.
1897
.
32.
Engel
,
J.
,
Koltun
,
V.
, and
Cremers
,
D.
,
2017
, “
Direct Sparse Odometry
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
40
(
3
), pp.
611
625
.
33.
Ozyesil
,
O.
,
Voroninski
,
V.
,
Basri
,
R.
, and
Singer
,
A.
,
2017
, “
A Survey of Structure from Motion
,” preprint arXiv:1701.08493.
34.
Schonberger
,
J. L.
, and
Frahm
,
J. M.
,
2016
, “
Structure-From-Motion Revisited
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
4104
4113
.
35.
Li
,
A. Q.
,
Coskun
,
A.
,
Doherty
,
S. M.
,
Ghasemlou
,
S.
,
Jagtap
,
A. S.
,
Modasshir
,
M.
,
Rahman
,
S.
,
Singh
,
A.
,
Xanthidis
,
M.
, and
O’Kane
,
J. M.
,
2016
, “
Experimental Comparison of Open Source Vision-Based State Estimation Algorithms
,”
International Symposium on Experimental Robotics
,
Nagasaki, Japan
,
Oct. 3–8
, Springer, pp.
775
786
.
36.
Jones
,
E. S.
, and
Soatto
,
S.
,
2011
, “
Visual–Inertial Navigation, Mapping and Localization: A Scalable Real-Time Causal Approach
,”
Int. J. Rob. Res.
,
30
(
4
), pp.
407
430
.
37.
Blanco
,
J. L.
,
González
,
J.
, and
Fernández-Madrigal
,
J. A.
,
2008
, “
A Pure Probabilistic Approach to Range-Only SLAM
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, IEEE, pp.
1436
1441
.
38.
Korkmaz
,
M.
,
Yılmaz
,
N.
, and
Durdu
,
A.
,
2016
, “
Comparison of the SLAM Algorithms: Hangar Experiments
,”
MATEC Web of Conferences
,
Konya, Turkey
,
Dec. 21–22
, Vol. 42, EDP Sciences, p.
03009
.
39.
García
,
S.
,
López
,
M. E.
,
Barea
,
R.
,
Bergasa
,
L. M.
,
Gómez
,
A.
, and
Molinos
,
E. J.
,
2016
, “
Indoor SLAM for Micro Aerial Vehicles Control Using Monocular Camera and Sensor Fusion
,”
2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC)
,
Braganca, Portugal
,
May 4–6
, IEEE, pp.
205
210
.
40.
Sayre-McCord
,
T.
,
Guerra
,
W.
,
Antonini
,
A.
,
Arneberg
,
J.
,
Brown
,
A.
,
Cavalheiro
,
G.
,
Fang
,
Y.
,
Gorodetsky
,
A.
,
McCoy
,
D.
, and
Quilter
,
S.
,
2018
, “
Visual–Inertial Navigation Algorithm Development Using Photorealistic Camera Simulation in the Loop
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, IEEE, pp.
2566
2573
.
41.
Wu
,
K.
,
Zhang
,
T.
,
Su
,
D.
,
Huang
,
S.
, and
Dissanayake
,
G.
,
2017
, “
An Invariant-EKF Vins Algorithm for Improving Consistency
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
1578
1585
.
42.
Kuzmin
,
M.
,
2018
, “
Classification and Comparison of the Existing SLAM Methods for Groups of Robots
,”
2018 22nd Conference of Open Innovations Association (FRUCT)
,
Jyvaskyla, Finland
,
May 15–18
, IEEE, pp.
115
120
.
43.
Brown
,
R. G.
, and
Hwang
,
P. Y.
,
1997
,
Introduction to Random Signals and Applied Kalman Filtering: With Matlab Exercises and Solutions
,
John Wiley and Sons
,
New York
.
44.
Chatterjee
,
A.
,
Rakshit
,
A.
, and
Singh
,
N. N.
,
2013
, “
Simultaneous Localization and Mapping (SLAM) in Mobile Robots
,” Vision Based Autonomous Robot Navigation,
Heidelberg
, Germany.
45.
Konolige
,
K.
, and
Agrawal
,
M.
,
2008
, “
Frameslam: From Bundle Adjustment to Real-Time Visual Mapping
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
1066
1077
.
46.
Li
,
S.
, and
Ni
,
P.
,
2010
, “
Square-Root Unscented Kalman Filter Based Simultaneous Localization and Mapping
,”
The 2010 IEEE International Conference on Information and Automation
,
Harbin, China
,
June 20–23
, IEEE, pp.
2384
2388
.
47.
Wan
,
E. A.
, and
Van Der Merwe
,
R.
,
2000
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373)
,
Lake Louise, AB, Canada
,
Oct. 4
, IEEE, pp.
153
158
.
48.
Julier
,
S. J.
, and
Uhlmann
,
J. K.
,
1997
, “
New Extension of the Kalman Filter to Nonlinear Systems
,”
Signal Processing, Sensor Fusion, and Target Recognition VI, Vol. 3068, International Society for Optics and Photonics
,
Orlando, FL
.
49.
Badue
,
C.
,
Guidolini
,
R.
,
Carneiro
,
R. V.
,
Azevedo
,
P.
,
Cardoso
,
V. B.
,
Forechi
,
A.
,
Jesus
,
L.
,
Berriel
,
R.
,
Paixao
,
T. M.
, and
Mutz
,
F.
,
2021
, “
Self-Driving Cars: A Survey
,”
Expert Syst. Appl.
,
165
, p.
113816
.
50.
Stachniss
,
C.
, and
Burgard
,
W.
,
2014
, “
Particle Filters for Robot Navigation
,”
Found. Trends Rob.
,
3
(
4
), pp.
211
282
.
51.
Nurminen
,
H.
,
Ristimäki
,
A.
,
Ali-Löytty
,
S.
, and
Piché
,
R.
,
2013
, “
Particle Filter and Smoother for Indoor Localization
,”
International Conference on Indoor Positioning and Indoor Navigation
,
Montbeliard, France
,
Oct. 28–31
, IEEE, pp.
1
10
.
52.
Hussain
,
M. I.
,
Azam
,
S.
,
Rafique
,
A.
,
Sheri
,
A. M.
, and
Jeon
,
M.
,
2022
, “
Drivable Region Estimation for Self-Driving Vehicles Using Radar
,”
IEEE Trans. Veh. Technol.
,
71
(
6
), pp.
5971
5982
.
53.
Baltrušaitis
,
T.
,
Ahuja
,
C.
, and
Morency
,
L. P.
,
2018
, “
Multimodal Machine Learning: A Survey and Taxonomy
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
41
(
2
), pp.
423
443
.
54.
Hassaballah
,
M.
,
Abdelmgeid
,
A. A.
, and
Alshazly
,
H. A.
,
2016
,
Image Feature Detectors and Descriptors
, Springer International Publishing Switzerland,
Springer
,
Egypt
, pp.
11
45
.
55.
Baltrušaitis
,
T.
,
Ahuja
,
C.
, and
Morency
,
L. P.
,
2018
, “
Challenges and Applications in Multimodal Machine Learning
,”
The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition
, Vol.
2
, pp.
17
48
.
56.
Gil
,
A.
,
Mozos
,
O. M.
,
Ballesta
,
M.
, and
Reinoso
,
O.
,
2010
, “
A Comparative Evaluation of Interest Point Detectors and Local Descriptors for Visual Slam
,”
Mach. Vis. Appl.
,
21
(
6
), pp.
905
920
.
57.
Salahat
,
E.
, and
Qasaimeh
,
M.
,
2017
, “
Recent Advances in Features Extraction and Description Algorithms: A Comprehensive Survey
,”
2017 IEEE International Conference on Industrial Technology (ICIT)
,
Toronto, ON, Canada
,
Mar. 22–25
, IEEE, pp.
1059
1063
.
58.
Přibyl
,
B.
,
Chalmers
,
A.
,
Zemčík
,
P.
,
Hooberman
,
L.
, and
Čadík
,
M.
,
2016
, “
Evaluation of Feature Point Detection in High Dynamic Range Imagery
,”
J. Vis. Commun. Image Represent.
,
38
, pp.
141
160
.
59.
Harris
,
C. G.
, and
Stephens
,
M.
,
1988
, “
A Combined Corner and Edge Detector
,”
Alvey Vision Conference
,
UK
, Vol. 15, pp.
10
5244
.
60.
Rosten
,
E.
, and
Drummond
,
T.
,
2006
, “
Machine Learning for High-Speed Corner Detection
,”
European Conference on Computer Vision
,
Graz, Austria
,
May 7–13
, Springer, pp.
430
443
.
61.
Tuytelaars
,
T.
, and
Mikolajczyk
,
K.
,
2008
,
Local Invariant Feature Detectors: A Survey
, 3rd ed., Vol.
3
,
Now Publishers Inc.
,
Hanover, MA
, pp.
177–280
.
62.
Aulinas
,
J.
,
Carreras
,
M.
,
Llado
,
X.
,
Salvi
,
J.
,
Garcia
,
R.
,
Prados
,
R.
, and
Petillot
,
Y. R.
,
2011
, “
Feature Extraction for Underwater Visual Slam
,”
OCEANS 2011 IEEE-Spain
,
Santander, Spain
,
June 6–9
, IEEE, pp.
1
7
.
63.
Eade
,
E.
, and
Drummond
,
T.
,
2009
, “
Edge Landmarks in Monocular Slam
,”
Proceedings of the British Machine Vision Conference
,
London, UK
,
Sept. 7–10
, pp.
588
596
.
64.
Harris
,
C. G.
, and
Pike
,
J.
,
1988
, “
3D Positional Integration From Image Sequences
,”
Image Vis. Comput.
,
6
(
2
), pp.
87
90
.
65.
Ballesta
,
M.
,
Gil
,
A.
,
Martinez Mozos
,
O.
, and
Reinoso
,
O.
,
2007
, “
Local Descriptors for Visual SLAM
,” CORE, pp.
1
6
66.
Muñoz-Salinas
,
R.
,
Marín-Jimenez
,
M. J.
,
Yeguas-Bolivar
,
E.
, and
Medina-Carnicer
,
R.
,
2018
, “
Mapping and Localization From Planar Markers
,”
Pattern Recognit.
,
73
, pp.
158
171
.
67.
Lowe
,
D. G.
,
2004
, “
Distinctive Image Features From Scale-Invariant Keypoints
,”
Int. J. Comput. Vis.
,
60
(
2
), pp.
91
110
.
68.
Zhou
,
H.
,
Yuan
,
Y.
, and
Shi
,
C.
,
2009
, “
Object Tracking Using Sift Features and Mean Shift
,”
Comput. Vis. Image Underst.
,
113
(
3
), pp.
345
352
.
69.
Lindeberg
,
T.
,
2012
, “
Scale Invariant Feature Transform
,”
Scholarpedia
,
7
(
5
), p.
10491
.
70.
Panchal
,
P.
,
Panchal
,
S.
, and
Shah
,
S.
,
2013
, “
A Comparison of SIFT and SURF
,”
Int. J. Innov. Res. Comput. Commun. Eng.
,
1
(
2
), pp.
323
327
.
71.
Se
,
S.
,
Lowe
,
D.
, and
Little
,
J.
,
2002
, “
Mobile Robot Localization and Mapping With Uncertainty Using Scale-Invariant Visual Landmarks
,”
Int. J. Rob. Res.
,
21
(
8
), pp.
735
758
.
72.
Bay
,
H.
,
Ess
,
A.
,
Tuytelaars
,
T.
, and
Van Gool
,
L.
,
2008
, “
Speeded-Up Robust Features (SURF)
,”
Comput. Vis. Image Underst.
,
110
(
3
), pp.
346
359
.
73.
Bay
,
H.
,
Tuytelaars
,
T.
, and
Van Gool
,
L.
,
2006
, “
Surf: Speeded Up Robust Features
,”
European Conference on Computer Vision
,
Graz, Austria
,
May 7–13
, Springer, pp.
404
417
.
74.
Kole
,
S.
,
Agarwal
,
C.
,
Gupta
,
T.
, and
Singh
,
S.
,
2015
, “
SURF and RANSAC: A Conglomerative Approach to Object Recognition
,”
Int. J. Comput. Appl.
,
109
(
4
).
75.
Rosten
,
E.
,
Porter
,
R.
, and
Drummond
,
T.
,
2008
, “
Faster and Better: A Machine Learning Approach to Corner Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
1
), pp.
105
119
.
76.
Li
,
A.
,
Jiang
,
W.
,
Yuan
,
W.
,
Dai
,
D.
,
Zhang
,
S.
, and
Wei
,
Z.
,
2017
, “
An Improved Fast+ Surf Fast Matching Algorithm
,”
Proc. Comput. Sci.
,
107
, pp.
306
312
.
77.
Viswanathan
,
D. G.
,
2009
, “
Features From Accelerated Segment Test (FAST)
,” Homepages.inf.ed.ac.uk.
78.
Schmid
,
C.
,
Mohr
,
R.
, and
Bauckhage
,
C.
,
2000
, “
Evaluation of Interest Point Detectors
,”
Int. J. Comput. Vis.
,
37
(
2
), pp.
151
172
.
79.
Canny
,
J. F.
,
1983
, “
Finding Edges and Lines in Images
,” Tech. Rep.,
Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab
.
80.
Calonder
,
M.
,
Lepetit
,
V.
,
Strecha
,
C.
, and
Fua
,
P.
,
2010
, “
Brief: Binary Robust Independent Elementary Features
,”
European Conference on Computer Vision
,
Crete, Greece
,
Sept. 5–11
, Springer, pp.
778
792
.
81.
Heinly
,
J.
,
Dunn
,
E.
, and
Frahm
,
J. M.
,
2012
, “
Comparative Evaluation of Binary Features
,”
European Conference on Computer Vision
,
Florence, Italy
,
Oct. 7–13
, Springer, pp.
759
773
.
82.
Li
,
Y.
,
Wang
,
S.
,
Tian
,
Q.
, and
Ding
,
X.
,
2015
, “
A Survey of Recent Advances in Visual Feature Detection
,”
Neurocomputing
,
149
(
PB
), pp.
736
751
.
83.
Paz
,
L. M.
,
Piniés
,
P.
,
Tardós
,
J. D.
, and
Neira
,
J.
,
2008
, “
Large-Scale 6-DOF SLAM With Stereo-in-Hand
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
946
957
.
84.
Rublee
,
E.
,
Rabaud
,
V.
,
Konolige
,
K.
, and
Bradski
,
G.
,
2011
, “
ORB: An Efficient Alternative to SIFT Or SURF
,”
2011 International Conference on Computer Vision
,
Barcelona, Spain
,
Nov. 6–13
, IEEE, pp.
2564
2571
.
85.
Lv
,
Q.
,
Josephson
,
W.
,
Wang
,
Z.
,
Charikar
,
M.
, and
Li
,
K.
,
2007
, “
Multiprobe LSH: Efficient Indexing for High-Dimensional Similarity Search
,”
Proceedings of the 33rd International Conference on Very Large Data Bases
,
Vienna, Austria
,
Sept. 23–28
, pp.
950
961
.
86.
Mur-Artal
,
R.
,
Montiel
,
J. M. M.
, and
Tardos
,
J. D.
,
2015
, “
ORB-SLAM: A Versatile and Accurate Monocular SLAM System
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1147
1163
.
87.
Mur-Artal
,
R.
, and
Tardós
,
J. D.
,
2014
, “
Orb-Slam: Tracking and Mapping Recognizable Features
,”
Workshop on Multiview Geometry in Robotics (MVIGRO)-RSS
,
Rome, Italy
,
July 13
, p.
2
.
88.
Mur-Artal
,
R.
, and
Tardós
,
J. D.
,
2017
, “
Visual–Inertial Monocular SLAM With Map Reuse
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
796
803
.
89.
Mur-Artal
,
R.
, and
Tardós
,
J. D.
,
2014
, “
Fast Relocalisation and Loop Closing in Keyframe-Based SLAM
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, IEEE, pp.
846
853
.
90.
Fujimoto
,
S.
,
Hu
,
Z.
,
Chapuis
,
R.
, and
Aufrère
,
R.
,
2016
, “
Orb-Slam Map Initialization Improvement Using Depth
,”
2016 IEEE International Conference on Image Processing (ICIP)
,
Phoenix, AZ
,
Sept. 25–28
,
IEEE
, pp.
261
265
.
91.
Majdik
,
A. L.
,
Verda
,
D.
,
Albers-Schoenberg
,
Y.
, and
Scaramuzza
,
D.
,
2015
, “
Air-Ground Matching: Appearance-Based GPS-Denied Urban Localization of Micro Aerial Vehicles
,”
J. Field Rob.
,
32
(
7
), pp.
1015
1039
.
92.
Han
,
L.
,
Zhou
,
G.
,
Xu
,
L.
, and
Fang
,
L.
,
2017
, “
Beyond Sift Using Binary Features in Loop Closure Detection
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
,
IEEE
, pp.
4057
4063
.
93.
Negre
,
P. L.
,
Bonin-Font
,
F.
, and
Oliver
,
G.
,
2016
, “
Cluster-Based Loop Closing Detection for Underwater SLAM in Feature-Poor Regions
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
,
IEEE
, pp.
2589
2595
.
94.
Gálvez-López
,
D.
, and
Tardos
,
J. D.
,
2012
, “
Bags of Binary Words for Fast Place Recognition in Image Sequences
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1188
1197
.
95.
Mur-Artal
,
R.
, and
Tardós
,
J. D.
,
2017
, “
ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1255
1262
.
96.
Civera
,
J.
,
Davison
,
A. J.
, and
Montiel
,
J. M.
,
2008
, “
Inverse Depth Parametrization for Monocular Slam
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
932
945
.
97.
Endres
,
F.
,
Hess
,
J.
,
Sturm
,
J.
,
Cremers
,
D.
, and
Burgard
,
W.
,
2013
, “
3-D Mapping With an RGB-D Camera
,”
IEEE Trans. Rob.
,
30
(
1
), pp.
177
187
.
98.
Engel
,
J.
,
Stückler
,
J.
, and
Cremers
,
D.
,
2015
, “
Large-Scale Direct SLAM With Stereo Cameras
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, pp.
1935
1942
..
99.
Caldato
,
B. A.
,
Achilles Filho
,
R.
, and
Castanho
,
J. E. C.
,
2017
, “
ORB-ODOM: Stereo and Odometer Sensor Fusion for Simultaneous Localization and Mapping
,
2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR)
,
Curitiba, Brazil
,
Nov. 8–11
, IEEE, pp.
1
5
.
100.
Kerl
,
C.
,
Sturm
,
J.
, and
Cremers
,
D.
,
2013
, “
Dense Visual SLAM for RGB-D Cameras
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, IEEE, pp.
2100
2106
.
101.
Geiger
,
A.
,
Lenz
,
P.
,
Stiller
,
C.
, and
Urtasun
,
R.
,
2013
, “
Vision Meets Robotics: The Kitti Dataset
,”
Int. J. Rob. Res.
,
32
(
11
), pp.
1231
1237
.
102.
Strasdat
,
H.
,
Davison
,
A. J.
,
Montiel
,
J. M.
, and
Konolige
,
K.
,
2011
, “
Double Window Optimisation for Constant Time Visual Slam
,”
2011 International Conference on Computer Vision
,
Barcelona, Spain
,
Nov. 6–13
, IEEE, pp.
2352
2359
.
103.
Lv
,
Q.
,
Lin
,
H.
,
Wang
,
G.
,
Wei
,
H.
, and
Wang
,
Y.
,
2017
, “
ORB-SLAM-Based Tracing and 3D Reconstruction for Robot Using Kinect 2.0
,”
2017 29th Chinese Control and Decision Conference (CCDC)
,
Chongqing, China
,
May 28–30
, IEEE, pp.
3319
3324
.
104.
Li
,
M.
,
Zhang
,
M.
,
Fu
,
Y.
,
Guo
,
W.
,
Zhong
,
X.
,
Wang
,
X.
, and
Chen
,
F.
,
2016
, “
Fast and Robust Mapping With Low-Cost Kinect V2 for Photovoltaic Panel Cleaning Robot
,”
2016 International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Macau, China
,
Aug. 18–20
, IEEE, pp.
95
100
.
105.
Pumarola
,
A.
,
Vakhitov
,
A.
,
Agudo
,
A.
,
Sanfeliu
,
A.
, and
Moreno-Noguer
,
F.
,
2017
, “
PL-SLAM: Real-Time Monocular Visual SLAM With Points and Lines
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
4503
4508
.
106.
Karami
,
E.
,
Prasad
,
S.
, and
Shehata
,
M.
,
2017
, “
Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images
,” preprint arXiv:1710.02726.
107.
Chien
,
H. J.
,
Chuang
,
C. C.
,
Chen
,
C. Y.
, and
Klette
,
R.
,
2016
, “
When to Use What Feature? SIFT, SURF, ORB, Or A-kaze Features for Monocular Visual Odometry
,”
2016 International Conference on Image and Vision Computing New Zealand (IVCNZ)
,
Palmerston North, New Zealand
,
Nov. 21–22
,
IEEE
, pp.
1
6
.
108.
Leutenegger
,
S.
,
Lynen
,
S.
,
Bosse
,
M.
,
Siegwart
,
R.
, and
Furgale
,
P.
,
2015
, “
Keyframe-Based Visual–Inertial Odometry Using Nonlinear Optimization
,”
Int. J. Rob. Res.
,
34
(
3
), pp.
314
334
.
109.
Triggs
,
B.
,
McLauchlan
,
P. F.
,
Hartley
,
R. I.
, and
Fitzgibbon
,
A. W.
,
1999
, “
Bundle Adjustment–a Modern Synthesis
,”
International Workshop on Vision Algorithms
,
Greece
,
Sept. 21–22
, Springer, pp.
298
372
.
110.
Engels
,
C.
,
Stewénius
,
H.
, and
Nistér
,
D.
,
2006
, “
Bundle Adjustment Rules
,”
Photogr. Comput. Vis.
,
2
(
32
).
111.
Sweeney
,
C.
,
Sattler
,
T.
,
Hollerer
,
T.
,
Turk
,
M.
, and
Pollefeys
,
M.
,
2015
, “
Optimizing the Viewing Graph for Structure-From-Motion
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 7–13
, pp.
801
809
.
112.
Mouragnon
,
E.
,
Lhuillier
,
M.
,
Dhome
,
M.
,
Dekeyser
,
F.
, and
Sayd
,
P.
,
2006
, “
Real Time Localization and 3D Reconstruction
,”
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
,
New York
,
June 17–22
, Vol. 1, IEEE, pp.
363
370
.
113.
Zhang
,
Y.
,
Yang
,
J.
,
Zhang
,
H.
, and
Hwang
,
J. N.
,
2019
, “
Bundle Adjustment for Monocular Visual Odometry Based on Detected Traffic Sign Features
,”
2019 IEEE International Conference on Image Processing (ICIP)
,
Taipei, Taiwan
,
Sept. 22–25
, IEEE, pp.
4350
4354
.
114.
Grisetti
,
G.
,
Kümmerle
,
R.
,
Strasdat
,
H.
, and
Konolige
,
K.
,
2011
, “
G2O: A General Framework for (Hyper) Graph Optimization
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
9
13
.
115.
Chojnacki
,
M.
, and
Indelman
,
V.
,
2018
, “
Vision-Based Dynamic Target Trajectory and Ego-Motion Estimation Using Incremental Light Bundle Adjustment
,”
Int. J. Micro Air Vehic. (Spec. Issue Estimation Control for MAV Navigation in GPS-Denied Cluttered Environment)
,
10
(
2
), pp.
157
170
.
116.
Indelman
,
V.
,
Roberts
,
R.
, and
Dellaert
,
F.
,
2015
, “
Incremental Light Bundle Adjustment for Structure From Motion and Robotics
,”
Rob. Auton. Syst.
,
70
, pp.
63
82
.
117.
Demoulin
,
Q.
,
Lefebvre-Albaret
,
F.
,
Basarab
,
A.
,
Kouamé
,
D.
, and
Tourneret
,
J. Y.
,
2020
, “
Constrained Bundle Adjustment Applied to Wing 3D Reconstruction With Mechanical Limitations
,”
IEEE International Conference on Image Processing (ICIP)
,
Abu Dhabi, UAE
,
Oct. 25–28
.
118.
Bustos
,
Á. P.
,
Chin
,
T. J.
,
Eriksson
,
A.
, and
Reid
,
I.
,
2019
, “
Visual SLAM: Why Bundle Adjust?
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
2385
2391
.
119.
Li
,
X.
, and
Ling
,
H.
,
2019
, “
Hybrid Camera Pose Estimation With Online Partitioning
,” preprint arXiv:1908.01797.
120.
Grisetti
,
G.
,
Stachniss
,
C.
, and
Burgard
,
W.
,
2009
, “
Nonlinear Constraint Network Optimization for Efficient Map Learning
,”
IEEE Trans. Intell. Trans. Syst.
,
10
(
3
), pp.
428
439
.
121.
Kümmerle
,
R.
,
Grisetti
,
G.
,
Strasdat
,
H.
,
Konolige
,
K.
, and
Burgard
,
W.
,
2011
, “
G 2 O: A General Framework for Graph Optimization
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, IEEE, pp.
3607
3613
.
122.
Engel
,
J.
,
2017
, “
Geometric and Semantic 3D Reconstruction
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
.
123.
Pirchheim
,
C.
,
Schmalstieg
,
D.
, and
Reitmayr
,
G.
,
2013
, “
Handling Pure Camera Rotation in Keyframe-Based Slam
,”
2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
,
Adelaide, SA, Australia
,
Oct. 1–4
, IEEE, pp.
229
238
.
124.
Indelman
,
V.
,
2012
, “
Bundle Adjustment Without Iterative Structure Estimation and Its Application to Navigation
,”
Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium
,
Myrtle Beach, SC
,
Apr. 23–26
, IEEE, pp.
748
756
.
125.
Bagchi
,
S.
, and
Chin
,
T. J.
,
2020
, “
Event-Based Star Tracking Via Multiresolution Progressive Hough Transforms
,”
The IEEE Winter Conference on Applications of Computer Vision
,
Snowmass, CO
,
Mar. 1–5
, pp.
2143
2152
.
126.
Eriksson
,
A.
,
Olsson
,
C.
,
Kahl
,
F.
, and
Chin
,
T. J.
,
2018
, “
Rotation Averaging and Strong Duality
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Salt Lake City, UT
,
June 18–23
, pp.
127
135
.
127.
Hartley
,
R.
,
Trumpf
,
J.
,
Dai
,
Y.
, and
Li
,
H.
,
2013
, “
Rotation Averaging
,”
Int. J. Comput. Vis.
,
103
(
3
), pp.
267
305
.
128.
Sim
,
K.
, and
Hartley
,
R.
,
2006
, “
Recovering Camera Motion Using L\infty Minimization
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
New York, NY
,
June 17–22
, Vol. 1, pp.
1230
1237
.
129.
Kneip
,
L.
, and
Li
,
H.
,
2014
, “
Efficient Computation of Relative Pose for Multi-Camera Systems
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Columbus, OH
,
June 23–28
, pp.
446
453
.
130.
Khosravian
,
A.
,
Chin
,
T. J.
,
Reid
,
I.
, and
Mahony
,
R.
,
2017
, “
A Discrete-Time Attitude Observer on so (3) for Vision and GPS Fusion
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
5688
5695
.
131.
Liu
,
L. Y.
,
2020
, “
Towards Observable Urban Visual SLAM
,” Ph.D. thesis, University of Technology, Sydney.
132.
Ovechkin
,
V.
, and
Indelman
,
V.
,
2018
, “
BAFS: Bundle Adjustment With Feature Scale Constraints for Enhanced Estimation Accuracy
,”
IEEE Rob. Auto. Lett. (RA-L)
,
3
(
2
), pp.
804
810
.
133.
Dellaert
,
F.
, and
Kaess
,
M.
,
2017
, “
Factor Graphs for Robot Perception
,”
Found. Trends Rob.
,
6
(
1–2
), pp.
1
139
.
134.
Kschischang
,
F. R.
,
Frey
,
B. J.
, and
Loeliger
,
H. A.
,
2001
, “
Factor Graphs and the Sum–Product Algorithm
,”
IEEE Trans. Inform. Theory
,
47
(
2
), pp.
498
519
.
135.
Indelman
,
V.
,
Roberts
,
R.
, and
Dellaert
,
F.
,
2015
, “
Incremental Light Bundle Adjustment for Structure From Motion and Robotics
,”
Rob. Auton. Syst.
,
70
, pp.
63
82
.
136.
Konolige
,
K.
,
Grisetti
,
G.
,
Kümmerle
,
R.
,
Burgard
,
W.
,
Limketkai
,
B.
, and
Vincent
,
R.
,
2010
, “
Efficient Sparse Pose Adjustment for 2D Mapping
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, IEEE, pp.
22
29
.
137.
Carlone
,
L.
,
Aragues
,
R.
,
Castellanos
,
J. A.
, and
Bona
,
B.
,
2014
, “
A Fast and Accurate Approximation for Planar Pose Graph Optimization
,”
Int. J. Rob. Res.
,
33
(
7
), pp.
965
987
.
138.
Frese
,
U.
,
Larsson
,
P.
, and
Duckett
,
T.
,
2005
, “
A Multilevel Relaxation Algorithm for Simultaneous Localization and Mapping
,”
IEEE Trans. Rob.
,
21
(
2
), pp.
196
207
.
139.
Thrun
,
S.
, and
Montemerlo
,
M.
,
2006
, “
The Graph Slam Algorithm With Applications to Large-Scale Mapping of Urban Structures
,”
Int. J. Rob. Res.
,
25
(
5-6
), pp.
403
429
.
140.
Olson
,
E.
, and
Agarwal
,
P.
,
2013
, “
Inference on Networks of Mixtures for Robust Robot Mapping
,”
Int. J. Rob. Res.
,
32
(
7
), pp.
826
840
.
141.
Kaess
,
M.
,
Johannsson
,
H.
,
Roberts
,
R.
,
Ila
,
V.
,
Leonard
,
J. J.
, and
Dellaert
,
F.
,
2012
, “
isam2: Incremental Smoothing and Mapping Using the Bayes Tree
,”
Int. J. Rob. Res.
,
31
(
2
), pp.
216
235
.
142.
Carlone
,
L.
,
Aragues
,
R.
,
Castellanos
,
J.
, and
Bona
,
B.
,
2012
, “
A Fast and Accurate Approximation for Pose Graph Optimization
,”
Int. J. Robot. Res
,
33
(
77
), pp.
965
987
.
143.
Carlone
,
L.
,
Aragues
,
R.
,
Castellanos
,
J. A.
, and
Bona
,
B.
,
2011
, “
A First-Order Solution to Simultaneous Localization and Mapping With Graphical Models
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, IEEE, pp.
1764
1771
.
144.
Carlone
,
L.
,
Aragues
,
R.
,
Castellanos
,
J. A.
, and
Bona
,
B.
,
2012
, “
A Linear Approximation for Graph-Based Simultaneous Localization and Mapping
,”
Rob.: Sci. Syst.
,
VII
, pp.
41
48
.
145.
Gawel
,
A.
,
Cieslewski
,
T.
,
Dubé
,
R.
,
Bosse
,
M.
,
Siegwart
,
R.
, and
Nieto
,
J.
,
2016
, “
Structure-Based Vision-Laser Matching
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
182
188
.
146.
Wang
,
C.
,
Zhang
,
H.
,
Nguyen
,
T. M.
, and
Xie
,
L.
,
2017
, “
Ultra-Wideband Aided Fast Localization and Mapping System
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, IEEE, pp.
1602
1609
.
147.
Liang
,
X.
,
Chen
,
H.
,
Li
,
Y.
, and
Liu
,
Y.
,
2016
, “
Visual Laser-SLAM in Large-Scale Indoor Environments
,”
2016 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Qingdao, China
,
Dec. 3–7
, IEEE, pp.
19
24
.
148.
Evers
,
C.
, and
Naylor
,
P. A.
,
2017
, “
Optimized Self-Localization for SLAM in Dynamic Scenes Using Probability Hypothesis Density Filters
,”
IEEE Trans. Signal Process.
,
66
(
4
), pp.
863
878
.
149.
Xin
,
G.x.
,
Zhang
,
X.t.
,
Wang
,
X.
, and
Song
,
J.
,
2015
, “
A RGBD SLAM Algorithm Combining ORB With Prosac for Indoor Mobile Robot
,”
2015 Fourth International Conference on Computer Science and Network Technology (ICCSNT)
,
Harbin, China
,
Dec. 19–20
, Vol. 1, IEEE, pp.
71
74
.
150.
Wang
,
X.
,
Chen
,
H.
, and
Li
,
Y.
,
2017
, “
Online Calibration for Monocular Vision and Odometry Fusion
,”
2017 IEEE International Conference on Unmanned Systems (ICUS)
,
Beijing, China
,
Oct. 27–29
, IEEE, pp.
602
607
.
151.
Guerrero-Font
,
E.
,
Massot-Campos
,
M.
,
Negre
,
P. L.
,
Bonin-Font
,
F.
, and
Codina
,
G. O.
,
2016
, “
An USBL-Aided Multisensor Navigation System for Field Auvs
,”
2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)
,
Baden-Baden, Germany
,
Sept. 19–21
, IEEE, pp.
430
435
.
152.
Qiu
,
K.
,
Liu
,
T.
, and
Shen
,
S.
,
2017
, “
Model-Based Global Localization for Aerial Robots Using Edge Alignment
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1256
1263
.
153.
Li
,
J.
,
Kaess
,
M.
,
Eustice
,
R. M.
, and
Johnson-Roberson
,
M.
,
2018
, “
Pose-Graph SLAM Using Forward-Looking Sonar
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2330
2337
.
154.
Luo
,
J.
, and
Qin
,
S.
,
2018
, “
A Fast Algorithm of SLAM Based on Combinatorial Interval Filters
,”
IEEE Access
,
6
(
3
), pp.
28174
28192
.
155.
Concha
,
A.
,
Loianno
,
G.
,
Kumar
,
V.
, and
Civera
,
J.
,
2016
, “
Visual–Inertial Direct SLAM
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
1331
1338
.
156.
Fischer
,
T.
,
Pire
,
T.
,
Čížek
,
P.
,
De Cristóforis
,
P.
, and
Faigl
,
J.
,
2016
, “
Stereo Vision-Based Localization for Hexapod Walking Robots Operating in Rough Terrains
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
2492
2497
.
157.
Yan
,
Z.
,
Ye
,
M.
, and
Ren
,
L.
,
2017
, “
Dense Visual Slam with Probabilistic Surfel Map
,”
IEEE Trans. Vis. Comput. Graph.
,
23
(
11
), pp.
2389
2398
.
158.
Rameau
,
F.
,
Ha
,
H.
,
Joo
,
K.
,
Choi
,
J.
,
Park
,
K.
, and
Kweon
,
I. S.
,
2016
, “
A Real-Time Augmented Reality System to See-Through Cars
,”
IEEE Trans. Vis. Comput. Graph.
,
22
(
11
), pp.
2395
2404
.
159.
Liu
,
H.
,
Zhang
,
G.
, and
Bao
,
H.
,
2016
, “
Robust Keyframe-Based Monocular SLAM for Augmented Reality
,”
2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
,
Merida, Mexico
,
Sept. 19–23
, IEEE, pp.
1
10
.
160.
Sjanic
,
Z.
,
Skoglund
,
M. A.
, and
Gustafsson
,
F.
,
2017
, “
EM-SLAM With Inertial/Visual Applications
,”
IEEE Trans. Aerosp. Electron. Syst.
,
53
(
1
), pp.
273
285
.
161.
Zhou
,
H.
,
Ni
,
K.
,
Zhou
,
Q.
, and
Zhang
,
T.
,
2016
, “
An SFM Algorithm With Good Convergence That Addresses Outliers for Realizing Mono-Slam
,”
IEEE Trans. Indus. Inform.
,
12
(
2
), pp.
515
523
.
162.
Qin
,
T.
,
Li
,
P.
, and
Shen
,
S.
,
2018
, “
Vins-mono: A Robust and Versatile Monocular Visual–Inertial State Estimator
,”
IEEE Trans. Rob.
,
34
(
4
), pp.
1004
1020
.
163.
Zienkiewicz
,
J.
,
Tsiotsios
,
A.
,
Davison
,
A.
, and
Leutenegger
,
S.
,
2016
, “
Monocular, Real-Time Surface Reconstruction Using Dynamic Level of Detail
,”
2016 Fourth International Conference on 3D Vision (3DV)
,
Stanford, CA
,
Oct. 25–28
, IEEE, pp.
37
46
.
164.
Tateno
,
K.
,
Tombari
,
F.
,
Laina
,
I.
, and
Navab
,
N.
,
2017
, “
CNN-SLAM: Real-Time Dense Monocular SLAM With Learned Depth Prediction
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
June 18–20
, pp.
6243
6252
.
165.
Wang
,
Z.
,
Xu
,
M.
,
Ye
,
N.
,
Wang
,
R.
, and
Huang
,
H.
,
2018
, “
RF-MVO: Simultaneous 3D Object Localization and Camera Trajectory Recovery Using RFID Devices and a 2D Monocular Camera
,”
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS)
,
Vienna, Austria
,
July 2–6
, IEEE, pp.
534
544
.
166.
Carlone
,
L.
, and
Karaman
,
S.
,
2018
, “
Attention and Anticipation in Fast Visual–Inertial Navigation
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
1
20
.
167.
Schmuck
,
P.
, and
Chli
,
M.
,
2017
, “
Multi-UAV Collaborative Monocular SLAM
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Marina Bay Sands, Singapore
,
May 29–June 3
,
IEEE
, pp.
3863
3870
.
168.
Wang
,
S.
,
Clark
,
R.
,
Wen
,
H.
, and
Trigoni
,
N.
,
2017
, “
Deepvo: Towards End-to-end Visual Odometry with Deep Recurrent Convolutional Neural Networks
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Marina Bay Sands, Singapore
,
May 29–June 3
,
IEEE
, pp.
2043
2050
.
169.
Teixeira
,
L.
, and
Chli
,
M.
,
2016
, “
Real-Time Mesh-based Scene Estimation for Aerial Inspection
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
,
IEEE
, pp.
4863
4869
.
170.
Lajoie
,
P. Y.
,
Ramtoula
,
B.
,
Chang
,
Y.
,
Carlone
,
L.
, and
Beltrame
,
G.
,
2020
, “
DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1656
1663
.
171.
Huang
,
W.
,
Liu
,
H.
, and
Wan
,
W.
,
2020
, “
An Online Initialization and Self-Calibration Method for Stereo Visual–Inertial Odometry
,”
IEEE Trans. Rob.
,
36
(
4
), pp.
1153
1170
.
You do not currently have access to this content.